Allylic and Benzylic Carbanions Substituted by Heteroatoms

Jean-François Biellmann, Strasbourg, France Jean-Bernard Ducep, Merrell International Research Center, Strasbourg, France

1. Introduction

This review covers carbanions of the following structure

in which X is a heteroatom and the double bond may be part of a conjugated system. Propargylic and allenic systems are also included. The cation M^+ is an alkaline or alkaline-earth element; transition metals are excluded. The chapter by Gilman and Morton in 1954 (1) was restricted to lithium derivatives. Reviews covering part of the subject include those on organometallic compounds, (2-4) on reagents for nucleophilic acylation, (5) on olefin synthesis with P(O)-activated reagents, (6, 7) on the formation and reactions of carbanions derived from allylic sulfoxides, (8) dithianes, (9) nitrosoamines, (10) thioethers and ethers, (11, 12) selenium compounds, (15, 16)

1.1. Nature of the Heteroatom

Allylic and benzylic carbanions adjacent to the following *heteroatoms* have been described:

- 1. Boron, as in an organoborane with a vinylic substituent. (17)
- Nitrogen, as in an amine, (18) amine N-oxide, (18a) enamine, (19) ynamine, (20) isonitrile, (21) thioisonitrile, (22) nitrosoamine, (23) iminodithiocarbonate diester, (24) amide, (25) bis(dialkylamino)phosphoramide, (26) dialkylaminoalkyloxyphosphoramide, (27) bis(alkyloxy)phosphoramide, (28) sulfonamide, (29) and nitro compound. (29a)
- Oxygen, as in an alkyl, aryl, tetrahydropyranyl, (30) trialkylsilyl ether, (31, 32) cyanohydrin ether, (33) ketal, (34) hemithioketal, (35) and bisdimethylamido- and dialkyl phosphate ester. (36)
- 4. Silicon, as in a silane. (37)
- Phosphorus, as in a phosphine oxide, (38) phosphine sulfide, (39) phosphinate, (40) phosphinamide, (39) thiophosphinate, (39) phosphonate, (41) and phosphonamide. (42)

- Sulfur, as in a thiol, (43) alkyl and aryl thioether, (44) dithioester, (45) thiothiazoline, (46) trialkyl silyl thioether, (47) *N,N*-dimethyldithiocarbamate, (48) dithioketal, (49) diphenylphosphinodithioate and diphenylphosphinothioate, (50) sulfoxide (51) and sulfimine, (52) sulfone (53) and sulfoximine, (52) sulfonic ester, (54) dialkylsulfonamide, (55) and thioketone. (56)
- 7. Chlorine, as in a benzyl or allyl tri-, di-, and monochloride. (57)
- 8. Selenium, as in an arylselenide (58) and arylselenoxide. (59)
- 9. Bromine, as in a monobromide or a dibromide. (60)
- 10. *Tellurium*, as in a telluride. (61)

The basicity and structures of these anions are considered first. This discussion is followed by sections on methods of generation of carbanions, reactions occurring during preparation, decomposition, and rearrangements of carbanions, reactions with electrophiles, regioselectivity and stereochemical aspects of the reactions, transformations of the reaction products, and some applications of these carbanions in synthesis.

2. Carbanions

2.1. Basicity

Are heterosubstituted carbanions more or less basic than the parent carbanion in which the heteroatom is replaced by a hydrogen? With some very acidifying substituents such as sulfone, sulfoxide, or phosphonyl, the answer is yes, but with others the answer is not so clear. Some experiments using an isotope-exchange method suggest that the oxygen in ethers renders the compound less acidic than the parent hydrocarbon. (62-64) Such results agree with nuclear magnetic resonance (nmr) measurements: the electron density determined by the chemical shift is higher at the *para* carbon in the carbanion **1** than at the *para* carbon of the unsubstituted anion **2**. (65)

Published pK_a 's are summarized in Table 1.

Table 1. Acidity Constants

Compound	рК _а	Method	Refs.
$C_6H_5SCH_2C_6H_5$	30.8	Equilibrium, Potassium salt in Me ₂ SO	67
$C_6H_5SCH(C_6H_5)_2$	26.7	The same	67
$(C_6H_5S)_2CHC_6H_5$	23.0	The same	67
1,3-Dithiane	31.2	Equilibrium, Cesium salt in cyclohexane	68
2-Phenyl-1,3-dithiane	28.2	The same	68
2-p-Biphenylyl-1,3-dithiane	26.1	The same	68
$C_6H_5CH_2SO_2CH_2C_6H_5$	22	Equilibrium, Potassium salt in Me ₂ SO	69
$[C_6H_5CH(CH_3)]_2SO_2$	23.5	The same	69
C_6H_5 R = H	10.79	Equilibrium in H ₂ O	70
$R = CH_3$	12.36	The same	70
$C_6H_5SCH_2SO_2C_6H_5$	20.3	Equilibrium,	66

	Potassium salt in Me ₂ SO	
$(C_6H_5)_2PCH_2SO_2C_6H_5$ 20.2	2 The same 66	5
$C_6H_5CH_2SO_2C_6H_5$ 23.4	1 The same 66	5
$C_6H_5CH_2SO_3Ar$ 21.7	7 Exchange in D ₂ O 72	2

Recent experiments show that the kinetic acidities determined by the rate of base-catalyzed exchange are not always a good indication of the thermodynamic acidity. (66) Care should be taken so that internal return does not complicate the exchange kinetics. However, this is not the case for one sulfoxide. (73)

The acidifying effect of sulfur has been the subject of numerous speculations. The effect of the empty *d* orbital was an early explanation but at present this is less favored. In addition to the purely polar effect, some authors propose an electron-acceptor conjugation of the sulfur with the alpha carbanion. (74) Recent calculations agree with a polarizability effect. (75-77) *Ab initio* calculations on CH₃CH₂, HOCH₂, CH₃OCH₂, HSCH₂, CH₃SCH₂, and CH₃SeCH₂ show that carbanion stabilization by the alpha heteroatom is subject to appreciable stereoelectronic effects. The "equatorial" type **3** is found to be the most stable. (78, 79) This explains some stereoselective reactions such as the equatorial reactivity of dithianes. (80, 81)

The pK_a 's of substituted 1,3-dithianes were determined by an equilibrium method as the cesium salts in cyclohexylamine. On the basis of substituent effects it was proposed that the anionic carbon is planar in the aryl-substituted dithiane anion. (68)

The effect of a thiophenyl group on the pK_a was measured by an equilibrium method in dimethyl sulfoxide. The introduction of this group increases the acidity from 4.9 to 11.5 pK_a units and the cumulative effect of this group is

additive, which is contrary to the effect of the phenyl group. (66, 67) The diphenylphosphino group $(C_6H_5)_2P$ - has about the same effect as the thiophenyl group. (66)

Experiments suggest that increased alkyl substitution decreases acidity. For instance, the thioether **4** is not metalated by *n*-butyllithium under conditions where the thioether **5** reacts. (82) This seems to favor an sp^3 -hybridized carbanion in which the methyl group has an inductive effect unfavorable for carbanion formation. (83)

For protons alpha to a sulfone group the introduction of phenyl conjugation increases the acidity even more than for dithianes. Dimethyl sulfone has a pK_a of 28.5, dibenzyl sulfone 22, (69) and methyl phenyl sulfone 27.

Anomalously low pK_a 's were found for the cyclic sulfones 6: R = H, 10.75 (H₂O); R = CH₃, 12.36(H₂O).

It was suggested that the anion has aromatic character. (70, 71)

The number of calculations on carbanions alpha to heteroatoms almost exceeds the number of pK_a determinations. However, further studies of structural effects are needed on the basicity of heterosubstituted carbanions.

2.2. Structures

Interesting facts have emerged from the structural investigation of crystalline carbanions, *e.g.*, benzyllithium and indenyllithium. (84-86) Similar studies have not been undertaken with heterosubstituted carbanions even though their stability is probably adequate. Such work could provide information on a number of important points including the chelation of the cation by the heteroatom, location of the cation relative to the conjugated system, and conformation in the reacting molecules.

Some details of the structures of heterosubstituted carbanions can be deduced from the stereochemistry of the reaction products (see Stereochemistry section, p. 40). The carbanions of thioethers **7** and **8** do not interconvert at -18° . The lower limit of activation energy of 19.5 kcal/mol was

estimated for the rotation of the beta - gamma bond. (87) This value is higher than for comparable carbon systems (88) and it has been suggested that the rotation about the alpha - beta bond is slow in carbanions derived from propenyl and allyl phenyl ethers. (89)

The carbanion **9** was studied by nmr spectroscopy. The chain has the stereochemistry indicated in formula **9** and the chemical shifts suggest equal electron densities at the alpha and gamma carbon atoms. (90)

Dissociation and solvation of ion pairs of heterosubstituted carbanions have been little studied except for carbanions derived from thioethers and sulfoxides. Conductivity measurements at -78° of the lithium carbanion derived from methyl benzyl sulfoxide at various concentrations show that in tetrahydrofuran and tetrahydrofuran-N,N,N',N'-tetramethylethylenediamine there are no free ions. However, after addition of cryptand[2.2.2] **10**,

triple ions and free ions appear to some extent. The slow appearance of

conductivity was attributed to a gradual dissociation. In contrast, the carbanion from benzyl phenyl thioether is present in tetrahydrofuran at -78° in part as a free ion and the increase in conductivity is rapid after addition of cryptand[2.2.2]. Though more basic, the thioether carbanion is more dissociated than the sulfoxide carbanion. This is attributed to a strong interaction of the sulfoxide group with the lithium. These results are consistent with ¹³C and ¹H nmr measurements. (91, 92)

The carbanion derived from benzyltrimethylsilane has been studied by ¹³C nmr spectroscopy. The corresponding lithium carbanion is a solvent-separated ion pair or a contact ion pair depending on the temperature, while the sodium carbanion is a contact ion pair. (92a) The classical spectroscopic study of the fluorenyl anion has been extended to C-9 sulfur substituted compounds $C_6H_5S(O)_n$ where n = 0, 1, 2. The solvent-separated ion pair for the thioether carbanion in tetrahydrofuran at 20° and the contact ion pair were found in 2-methyltetrahydrofuran even at low temperatures. The sulfone carbanion is both a contact ion pair and a solvent-separated ion pair according to ¹H nmr measurements. (92b)

More developments should be expected in the areas of the basicity and the structure of heterosubstituted carbanions. It is important to determine how the presence of a heteroatom influences the structure of the carbanion. Through a better understanding of structural effects, it might be possible to improve the yield, the regioselectivity, and the stereoselectivity of these reactions.

3. Methods of Generation of Heterosubstituted

Carbanions

Heterosubstituted carbanions are prepared by the usual methods for generating carbanions. Side reactions caused by the heteroatom sometimes make it necessary to use more selective agents such as dialkylamides. It is possible to generate the heterosubstituted carbanions by special methods such as fragmentation or addition.

The methods of generating ions are presented in the following order: action of metals, metalations by reagents such as metal alkyls and aryls, amides, alkoxides, hydrides, *etc.*, transmetalation, halogen–metal interchange, addition, and fragmentation. Side reactions occurring during the preparation of carbanions are discussed. The chapter ends with a procedure for choosing a suitable metalating reagent.

3.1. Action of Metal

The action of lithium on benzophenone dimethyl ketal **11** yields a carbanion **12** by cleavage of a carbon-oxygen bond (Eq. 1). (93, 94)

$$(C_6H_5)_2C(OCH_3)_2 + 2Li \longrightarrow (C_6H_5)_2\overline{C}OCH_3Li^+ + CH_3OLi$$
11
12
(1)

This method has not been used much for the preparation of heterosubstituted carbanions. However, an alternate procedure employs the cleavage of a phenylthio ether with a lithium arylide to generate the desired intermediate. 94a,b

3.2. Metalations

A proton alpha to the heteroatom in substituted allylic or benzylic systems can be removed with a more basic agent. A large variety of such agents are used, with *n*-butyllithium being the most common. The introduction of sterically hindered amides has extended the metalation procedure to compounds carrying substituents that react with organolithiums. Sodium and potassium hydride and corresponding alkoxides have been less frequently used. Possibly in many of the cases described in the tables, other bases and solvents would give similar results and yields might be improved by exploring other experimental conditions.

n-Butyllithium as the commercially available solution in a hydrocarbon is used in a stoichiometric amount^{*} with the compound to be metalated in solution in tetrahydrofuran. The temperature is usually below 0°, sometimes -78° . At lower temperatures, tetrahydrofuran–diethyl ether mixtures can be used. At low temperature *n*-butyllithium has a low reactivity because of its polymeric nature. By addition of a chelating agent, usually

N,N,N¢,N¢-tetramethylethylenediamine (TMEDA), in molar amounts, the polymer is broken down. Decomposition of tetrahydrofuran **13** by *n*-butyllithium is not negligible at 20° (Eq. 2). (99)

$$\underbrace{\bigcirc}_{13} + n \cdot C_4 H_9 Li \longrightarrow \underbrace{\bigcirc}_{14} CH_2 = CH_2 + CH_2 = CHOLi$$

$$(2)$$

This decomposition can also be brought about by the newly generated carbanion **14**. If a temperature above 0° is needed to prepare the carbanion, the next step must be carried out without delay for a reasonable yield.

With allylic systems *n*-butyllithium is the most commonly used base. Its action is commented on only if side reactions occur or if special conditions must be used, such as addition of potassium *t*-butoxide or of hexamethylphosphoramide. Otherwise the reader is referred to the tables.

With N-prenylindole **15** and N-prenylcarbazole **16** the reaction of *n*-butyllithium is complex (Eqs. 3 and 4). With the former the enamine proton seems to be removed to some extent, and with the latter the allylic proton is

removed and the carbanion undergoes alkylation by the starting material. (100-102)

The manner in which the reagent is introduced to the medium is sometimes very important. If *n*-butyllithium is added slowly to a solution of allylmethylphenylamine **17** in *n*-hexane in the presence of potassium *t*-butoxide, isomerization to methylphenylpropenylamine **18** is important. The carbanion is protonated by the starting amine and the propenylamine is not deprotonated by *n*-butyllithium. (103) If the addition of base is rapid or if a stronger base such as *t*-butyllithium is used, the expected carbanion **19** is produced (Eq. 5).

 $C_{6}H_{5}(CH_{3})NCH_{2}CH = CH_{2} \xrightarrow[Rapid]{\text{Slow}} C_{6}H_{5}(CH_{3})NCH = CHCH_{3}$ $C_{6}H_{5}(CH_{3})NCH = CHCH_{3}$ $C_{6}H_{5}(CH_{3})NCHCHCH_{2}$ (5)

Similar observations have been made with allyl benzyl thioether **20**. If the addition of *n*-butyllithium to a solution of the thioether in tetrahydrofuran at -78° is rapid, a mixture of 70% of carbanion **21** and 30% of thiolate **23** arising from the rearrangement of carbanion **22** is produced. Slow addition produces only thiolate **23** (Eq. 6). (104)

The metalation of 3-nitropropene to the dianion occurs cleanly with *n*-butyllithium in tetrahydrofuran in the presence of hexamethylphosphoramide at -80 to -90° . (29a)

The reactivity of *n*-butyllithium can be enhanced by adding potassium *t*-butoxide. Allylmethylphenylamine does not react with *n*-butyllithium in tetrahydrofuran, but is metalated by *n*-butyl- or *t*-butyllithium in the presence of potassium *t*-butoxide in hexane. (89, 103) The allylic proton is removed in phenyl (Z)-propenyl ether by *n*-butyllithium–potassium *t*-butoxide in petroleum ether (103) and the vinylic proton is removed in the corresponding tetrahydropyranyl ether by *sec*-butyllithium–potassium *t*-butoxide in tetrahydrofuran. (105) Since two items, the solvent and the substituent, have been changed, it is not clear if both or only one factor is important for the change in regioselectivity.

Reaction of the acetal **24** with *n*-butyllithium proceeds by cleavage of the oxygen-carbon bond (Eq. 7). (106)

With silanes, *n*-butyllithium–hexamethylphosphoramide was used. In contrast, methyllithium attacks at silicon. (107)

$$(CH_3)_3SiCH_2C_6H_5 \longrightarrow (CH_3)_3Si\overline{C}HC_6H_5Li^+$$

$$(CH_3)_3SiCH_2C_6H_5 \longrightarrow (CH_3)_4Si + C_6H_5CH_2^-Li^+$$

Allyltriphenylsilane in ether is metalated with *n*-butyllithium-N,N,N¢,N¢-tetramethylethylenediamine. (108)

Ketene dithioketals are metalated by n-butyllithium in tetrahydrofuran in the presence of hexamethylphosphoramide (9, 109) and by sodium amide in hexamethylphosphoramide. (110)

The reaction of *n*-butyllithium with benzyl chloride is very sensitive to the solvent. In *n*-hexane, diethyl ether, and dioxane the reaction products are best explained by the formation of benzyllithium. However, in tetrahydrofuran carbanion **25** must be formed, leading to stilbene. (60, 111) This carbanion is best produced at -100° in tetrahydrofuran, similar to the one derived from benzylidene chloride. (112) With benzyl bromide attack occurs at the bromine atom. (60, 111)

C₆H₅CHClLi⁺ 25

The action of a base on a vinylic system is more complex. In addition to the removal of the allylic proton, two other reactions may compete: addition of the base to the double bond and removal of the vinylic proton. Enamines are metalated at the allylic carbon by *n*-butyllithium in

tetrahydrofuran-hexamethylphosphoramide (113) or by *t*-butyllithium, which has a higher reactivity than *n*-butyllithium. (103) Vinyl ethers, depending on the substituents at oxygen and on the base, give vinylic or allylic carbanions. With *n*-amylsodium in petroleum ether or

t-butyllithium-N,N,N¢,N¢-tetramethylethylenediamine in tetrahydrofuran, the vinylic proton is removed from 1-methoxy and 1-ethoxy-1-propene. (114-117)

Many dianions can be produced by the action of *n*-butyllithium. Benzyl and allyl thiols are metalated by *n*-butyllithium-N,N,N',N'-tetramethylethylenediamine in tetrahydrofuran to give dianions. (43, 118)

 $C_6H_5CH_2SH \longrightarrow C_6H_5\overline{C}HS^-$

Dicarbanions like 26 and 27 were prepared in a similar fashion. (119, 120)

The latter, **27**, is stable only in the presence of lithium bromide.

The following *gem*-dicarbanions were prepared from benzyl sulfones, (55, 121-123) allyl sulfones, (92) and propargyl ethers: (124, 125)

sec-Butyllithium (126) is more reactive and more sterically hindered than *n*-butyllithium. With alkyl allyl ethers *n*-butyllithium in tetrahydrofuran at -65° does not react; by contrast sec-butyllithium produces the allylic carbanion. (127) However, *n*-butyllithium under the same condition reacts with phenyl allyl ethers. (32) The presence of a phenyl group seems to have a noticeable influence on the metalation rate. (32, 104) For triethylsilyl allyl ether, sec-butyllithium is a very efficient base. (32) With allyl thioether and derivatives sec-butyllithium was used. (45, 129-131)

Triphenylmethyllithium attacks both the allylic carbon and the double bond of thiacyclobutene (Eq. 8). (132)

In N-methyl-1,4-dihydropyridine the vinylic proton at C-2 is removed by *n*-butyllithium and potassium *t*-butoxide, while the allylic proton at C-4 is removed by trimethylsilylmethyl potassium. (132a)

Lithium, sodium, and potassium amide in ammonia are efficient bases. (49, 133-135) More hindered amides like lithium diethylamide, diisopropylamide, isopropylcyclohexylamide, and 2,2,6,6-tetramethylpiperidide allow access to carbanions where other metalating agents give complex reaction mixtures. The amides are usually prepared *in situ* from amine and *n*-butyllithium, and the compound to be metalated is then added.

The reaction of organolithium (RLi) with boranes leads to a complex by addition of R^- to the boron atom. However, with lithium 2,2,6,6-tetramethylpiperidide this addition can be avoided and the carbanion is formed in good yield. Lithium diisopropylamide and isopropylcyclohexylamide were inefficient in this reaction. (17)

Nitrosoamines give in excellent yield the corresponding anion with lithium diisopropylamide. With other reagents, the reaction is more complex. (23) The metalation rate of nitrosoamines by lithium diisopropylamide is greatly enhanced in the presence of potassium *t*-butoxide. (135a)

Allyl and benzyl benzamide can be converted to the dianion with lithium diisopropylamide. 135b,c

 $C_6H_5CONHCH_2C_6H_5 \longrightarrow C_6H_5CONCHC_6H_5$

When the carbanion $CH_2 = CH\bar{C}Cl_2Li^+$ is prepared from 3,3-dichloropropene

and lithium 2,2,6,6-tetramethylpiperidide, some brominated product is found in the reaction products. This results from the presence of lithium bromide in the methyllithium used to prepare the amide and from chloride–bromide exchange in the final product. The side product disappears after removal of lithium bromide by triglyme addition to the methyllithium solution. (135d)

The propargyl thioether $CH_3SC \equiv CCH_2OCH_3$ and acetal $CH_3SC \equiv$

 $CCH(OC_2H_5)_2$ are converted to carbanions by lithium diisopropylamide and diethylamide in tetrahydrofuran. (136, 137) With sodium amide in ammonia the allenic carbanion **29** produced from **28** is isomerized to **30**. (133)

$$CH_{3}C \equiv CSC_{2}H_{5} \xrightarrow{NaNH_{2}} CH_{2} = C = \overline{C}SC_{2}H_{5} \xrightarrow{} C \equiv CCH_{2}SC_{2}H_{5}$$

$$^{29} \xrightarrow{} C \equiv CCH_{2}SC_{2}H_{5}$$

30

Allyl N,N-diethyldithiocarbamate **31** and the ketene ketal **33** give the carbanions **32** and **34** with lithium diisopropylamide in tetrahydrofuran. (138, 139)

The preparation of carbanions from sulfoxides is improved by the use of a lithium dialkylamide. (140-142) In tetrahydrofuran–hexamethylphosphoramide, the phosphonate ester **35** can be converted to the anion by lithium isopropylamide. (143)

The attack of many reagents on selenoethers or selenoxides occurs at the selenium atom. However with lithium dialkylamide metalation occurs cleanly. (58, 59, 144)

Organomagnesium compounds have been seldom used as bases. For example, phenyl prenyl sulfone is reported to be metalated by ethylmagnesium

bromide. (145)

Potassium *t*-butoxide has occasionally been used as a base with isonitriles and sulfones. (146-148) Also, it was used as an additive to butyllithium as mentioned above.

Alkali hydrides usually react slowly. The higher temperature required for complete metalation may be harmful to the carbanion and lead to decomposition products. Allylic phosphonates can be metalated by sodium hydride in dimethoxyethane or in the presence of hexamethylphosphoramide. (149-151) Isonitriles and dithioacetals in dimethylformamide are transformed to the corresponding carbanions by the same reagent. (152, 153) Potassium hydride was used for the production of carbanions from allyl sulfoxides in tetrahydrofuran. (154) In the presence of a stabilizing substituent and a reactive reagent, triethylamine may be sufficient for some isonitriles (Eq. 9). (154a)

3.3. Transmetalation

This method was used to prepare dichloroallyllithium from a plumbane by the action of *n*-butyllithium in tetrahydrofuran at -90° (Eq. 10). (155)

$$(C_{6}H_{5})_{3}PbCH_{2}CH = CCl_{2} + n - C_{4}H_{9}Li \longrightarrow (C_{6}H_{5})_{3}PbC_{4}H_{9} - n + CH_{2}CHCCl_{2}Li^{+} (10)$$

3.4. Phase Transfer

Probably because of the low acidity of most of the starting materials, phase transfer has seldom been used to generate carbanions. One early example of its use is the reaction 2,5-dihydrothiophene-1,1-dioxide with acrylonitrile in the presence of trimethylbenzylammonium hydroxide as a catalyst (Eq. 11). (156) All four hydrogen atoms react and no products from

ring opening of the intermediate carbanions are detected. Under the usual metalation procedure the carbanion undergoes a rapid electrocyclic ring opening. In phase transfer, where the carbanion is generated in the presence of the reactant, the lifetime of the intermediate carbanion may be short with respect to the half-life of rearrangement or elimination. The Horner reaction and the condensation of sulfones with aldehydes were performed in excellent yield by phase transfer (Eqs. 12 and 13). (157, 158)

$$(C_2H_5O)_2P(O)CH_2Ar + Ar'CHO \xrightarrow{C_nH_6} ArCH = CHAr'$$
 (12)

$$C_{6}H_{5}SO_{2}CH_{2}C_{6}H_{5} + C_{6}H_{5}CHO \xrightarrow[NaOH. (C_{2}H_{5})_{3}N'CH_{2}C_{6}H_{5}I] \rightarrow CH(C_{6}H_{5}) = CH(C_{6}H_{5})$$
(13)

3.5. Halogen–Metal Interchange

This method has been used very little, probably because the starting materials are not readily available and the reaction of the generated carbanions with the starting material is difficult to control. The action of *n*-butyllithium on benzotrichloride and 1,1,1-trichloro-2-propene gives at -100 to -105° the

lithium compounds $C_6H_5CCl_2Li$ and CCl_2CHCH_2Li , the latter in a yield of *ca*.

50%. (159, 160)

3.6. Addition

Carbanions can be generated by addition of a carbanion to $\sum_{x \in X} C = X$ double bonds:

$$\sum C = X + R^{-}M^{+} \longrightarrow -\bar{C}XRM^{+}$$

or by addition to activated double bonds.

Examples of the first mode are the reactions of organomagnesiums and lithiums with aromatic thioketones **36** and dithioesters **37**. (56, 161-163)

$$(C_{6}H_{5})_{2}CS + C_{6}H_{5}Li \longrightarrow (C_{6}H_{5})_{2}\bar{C}SC_{6}H_{5}Li^{+}$$

$$K_{6}H_{5}C(S)SCH_{3} + C_{2}H_{5}MgBr \longrightarrow [C_{6}H_{5}\bar{C}(SC_{2}H_{5})(SCH_{3})]_{2}Mg^{+2}$$

$$K_{6}H_{5}C(S)SCH_{3} + C_{2}H_{5}MgBr \longrightarrow [C_{6}H_{5}\bar{C}(SC_{2}H_{5})(SCH_{3})]_{2}Mg^{+2}$$

The second method is illustrated by the addition of lithium compounds to a ketenethioketal (164) (Eq. 14), to such heteroatom-substituted allenes as phosphine oxides, (165-167) sulfoxides, 166 and sulfones 166 (Eq. 15), and to phospholes (167) (Eq. 16).

$$R_{2}C = C = CRX + R'Li \longrightarrow R_{2}C = CR'CRXLi^{+}$$
(also lithium cuprate)
$$X = -P(O)(C_{6}H_{9})_{2}; -S(O)Ar; -SO_{2}Ar$$
(15)

3.7. Fragmentation

The reaction of *n*-butyllithium, as contrasted to the earlier discussion involving triphenylmethyllithium, with thiacyclobutene takes a somewhat unusual course. Attack on the sulfur occurs and ring opening gives the allylic carbanion **38** (Eq. 17). (132)

$$\square_{S} + n - C_{4}H_{9}Li \longrightarrow n - C_{4}H_{9}SCHCHCH_{2}Li^{+}$$

$$\alpha \beta$$
38
(17)

This method of generation of the carbanion **38** may control its stereochemistry, while the alpha- beta bond should be *cis* if rotation around this bond is slow. This point awaits further investigation.

3.8. Comments

1. There are a few examples of carbanions not derived directly from starting material, since the initially formed carbanion may undergo an elimination to form a species that is subsequently metalated (Eq. 18). (168)

$$Cl_{2}CHCCl = CHCl \xrightarrow{n - C_{4}H_{9}Li} Cl_{2}\overline{C}CCl = CHCl \longrightarrow Cl_{2}C = C = CHCl + Cl^{-} \xrightarrow{n - C_{4}H_{9}Li} Cl_{2}C = C = \overline{C}Cl \xrightarrow{(18)}$$

There are other such examples in the literature. (169, 170)

- The addition to the basic medium of a solution containing the compound to be metalated and the electrophilic reagent has seldom been tried for obvious reasons. (38) However, the method might be useful for unstable carbanions. The carbanion formed from benzyl isothiocyanate is rapidly trapped by ketones. If a solution containing benzyl isothiocyanate and a ketone is added to potassium *t*-butoxide in tetrahydrofuran, then the addition compound is obtained. (22)
- Isomerization of carbanions can be used in some cases. The action of *n*-butyl- or *n*-amylsodium on N,N-dimethylbenzylamine in hexane produces the *ortho*-metalated species 39, which undergoes slow isomerization to the side chain anion 40. The benzylic anion 40 is produced directly by phenylsodium or phenylpotassium. (18)

In conclusion, if one is faced with the problem of generating a carbanion for the first time from a species believed to be acidic, the following procedure is recommended. The commercially available and previously titrated *n*-butyllithium should first be tried. (95-98) One equivalent of base is added to a solution containing the product to be metalated in the presence of an amine, preferably redistilled N,N,N¢,N¢-tetramethylethylenediamine in tetrahydrofuran. All operations must be performed under nitrogen or, better, argon, at -78° . During the addition the solution is observed and color changes are noted. The appearance of a color that deepens as more *n*-butyllithium is added may indicate a stable carbanion (or a rapid decomposition of the carbanion to a colored species). A transient color during the addition could suggest the decomposition or a rapid rearrangement of the carbanion. In general the solution of carbanion described here is colored even if only faintly yellow although it is far from certain whether the color is attributable to the carbanion.

In trial experiments it is convenient to add (at -78°) deuterium oxide (diluted in tetrahydrofuran) to the reaction mixture 1 hour after addition of *n*-butyllithium. The deuterium content of the product is determined by spectroscopic examination. Three situations may be encountered:

- The starting material is recovered with *no* deuterium incorporation. The metalation most likely did not proceed, so a more powerful base should be tried: *sec-* or *t*-butyllithium or a lithium dialkylamide or a combination like *n*-butyllithium–potassium *t*-butoxide.
- 2. The starting material has incorporated deuterium. The carbanion was obtained and is apparently stable under these conditions. Further exploration of the reaction conditions may improve yields.
- 3. No starting material is recovered. The *n*-butyllithium caused a reaction other than proton removal, carbanion decomposition or rearrangement. Further studies of the reaction product can give the answer. Lowering the temperature may slow down the decomposition or the rearrangement. A more specific base like a dialkylamide should be tried or the reactive group should be protected.

After it has been established that the carbanion is formed through its reaction with deuterium oxide, the next step is to study its reactivity with other reagents (see the section on reagents, p. 28). Usually reactions with halides, ketones, and epoxides proceed well. However, with these reagents it may be necessary to increase the reaction temperature or to add a more solvating solvent like hexamethylphosphoramide. The reaction time may vary from a few seconds to several hours. In many cases the discharge of the color or appearance of a precipitate may indicate a reaction.

4. Decomposition of Carbanions

Carbanions often undergo side reactions and disappear. Sometimes the products are not characterized and the literature may state that the carbanion decomposed. Yet, the decomposition reaction is clean and may be useful. Various side reactions are discussed in the following order: alpha, alpha'-beta, and other eliminations, cyclizations and ring openings, and migrations.

4.1. Eliminations

Alpha elimination gives rise to carbenes. This was observed with the

$$\overline{C} - X \longrightarrow C: + X^{-}$$

carbanion derived from benzylidene chloride, which at -65° decomposed to phenyl chlorocarbene. The carbene was trapped by addition to

2,3-dimethyl-2-butene. (160) The carbanion CCl_2CHCH_{2is} also unstable at -65° (159) and the decomposition of this intermediate in the presence of an olefin gives the vinylcyclopropane **41**. (135a)

$$\xrightarrow{\text{CCl}_2\text{CHCH}_2} \xrightarrow{\searrow} \xrightarrow{\qquad \text{Cl}} \xrightarrow{\quad cl} \xrightarrow$$

Alpha elimination was also noted with the carbanion C₆H₅CHOC₆H₅and

there was isolated the adduct derived from the addition of carbene to isobutylene. (171)

The carbanion formed on addition of ethylmagnesium bromide to a dithioate (Eq. 19) gives on standing a mixture of olefins that probably arises from alpha elimination and subsequent coupling. (163)

$$C_{6}H_{5}C(S)SCH_{3} + C_{2}H_{5}MgBr \longrightarrow C_{6}H_{5}\overline{C}(SC_{2}H_{5})SCH_{3} \longrightarrow C_{6}H_{5}(RS)C=C(SR)C_{6}H_{5}$$
(19)
$$C_{6}H_{5}(RS)C=C(SR)C_{6}H_{5}$$
(19)
$$C_{6}H_{3} \text{ or } C_{2}H_{5}$$
(19)

The following sequence was postulated for alpha elimination–addition to the carbene. (137)

 $RSC = CC(OC_{2}H_{5})_{2} \longrightarrow :C = C = C(OC_{2}H_{5})_{2} + RS^{-} \longrightarrow RSC(OC_{2}H_{5})_{2}C \equiv C^{-}$

The alpha¢-beta elimination of carbanions has received little consideration,

but its occurrence was observed accompanying the Wittig rearrangement of ethers. (172-177) The carbanion from benzyl cyclohexylmethyl ether gives methylenecyclohexane. (178)

Thioethers undergo alpha¢–beta elimination in high yield, (179, 180) probably because 1,2 rearrangement seldom occurs. The carbanion of benzyl *sec*-butyl thioether is stable at low temperature (-78°) but gives at 25° in 83% yield a 5:1 mixture of 1- and 2-butene. (179) The carbanion of benzyl *n*-octadecyl thioether undergoes alpha¢–beta elimination more slowly to give 1-octadecene in 92% yield by refluxing in tetrahydrofuran for 4–5 hours. (179)

From the carbanions that can extrude an alkoxide group, the product is often metalated through subsequent reaction with base (Eq. 20). (181-183)

$$C_2H_5OCH(CH_3)C\equiv CCH_2OC_2H_5 \xrightarrow{KNH_2} C_2H_5OCH_2CH = CHC\equiv C^-$$
 (20)

An elimination of a sulfone has been described (Eq. 21). (184)

The carbanion derived from bis(ethoxy)-N-benzyl-N-methylphosphoramide and *n*-butyllithium undergoes elimination to produce imines that react further with *n*-butyllithium (Eq. 22). (27, 28)

$(C_{2}H_{5}O)_{2}P(O)N(CH_{3})CHC_{6}H_{5} \longrightarrow (C_{2}H_{5}O)_{2}PO^{-} + CH_{3}N = CHC_{6}H_{5}$ (22)

Bis(dialkylamino)-N-benzyl-N-methylphosphoramides give more stable carbanions. (185)

4.2. Cyclizations and Ring Openings

Several cyclizations have been described. The anion derived from a pyridyl isonitrile cyclizes to the anion **42**. (146)

The base-catalyzed cyclization of hydrobenzamide **43** to amarine **46** occurs stereospecifically from the anion **44** prepared from hydrobenzamide in tetrahydrofuran and phenyllithium at -70° . At this temperature the anion **44** has a half-life of 7 hours. Very likely a disrotatory 6 π electron cyclization of the U-shaped anion occurs so as to form the cyclized anion **45**. (186-188)

The intramolecular addition of carbanions derived from allylic and benzylic ethers to double bonds occurs in diethyl ether-tetrahydrofuran (Eq. 23). (189)

Intramolecular opening of the epoxide **47** forms the oxetane **48**, but the epimeric epoxide **49** fragments. (190)

The cleavage of ethylene acetals to ethylene and a carboxylate under the action of a base is well documented. In substituted systems other cleavages may occur. For example, in the ketal **50** the proton abstracted is not that derived from the aldehyde, but from the glycol; the anion **51** cleaves to enolate **52** and benzaldehyde. (191, 192)

The monothioacetal **53** is metalated at the acetalic site and fragments to stilbene and thiocarboxylate. (35)

The analogous cleavage of 2-phenyltetrahydrofuran to tetrahydrofuran is described. (176)

$$C_6H_5 \longrightarrow C_6H_5C(O^-)=CH_2 + CH_2=CH_2$$

Ring opening of the anions derived from 2,5-dihydrofuran, 2,5-dihydrothiophene and its 1,1-dioxide, and 2,3-dihydrooxepin is quite rapid at –60°. (193) This reaction corresponds to the reversal of cyclization of hydrobenzamide to amarine discussed above.

4.3. Migrations

A number of migrations are observed in which the group on the heteroatom migrates to the carbanion part. These migrations, often occurring in high yield, may have preparative value. Migrations may sometimes be avoided by changes in the nature of the group on the heteroatom (often not of much importance because this group will be removed later) or by changes in reaction conditions such as temperature, solvent, or counterion.

In contrast to the extensive studies of migration in ylides derived from quaternary ammonium salts, migrations in carbanions derived from nitrogen have been little explored. In analogy to the Wittig migration, the carbanion of N,N-diphenylbenzylamine slowly (72 hours) undergoes at 25° a 1,2 migration. (194)

 $(C_6H_5)_2N\bar{C}HC_6H_5 \longrightarrow C_6H_5\bar{N}CH(C_6H_5)_2$

Sigmatropic shifts have been described (195) and used for ring enlargement of

 β -lactams. The β -lactam is metalated to the carbanion 54 at –78° with

lithium diisopropylamide in tetrahydrofuran, and it is likely that this carbanion undergoes a rapid concerted [2,3]sigmatropic shift to amide anion **55**. With steric hindrance and aromatic groups, products arising from nonconcerted migration may appear. (196)

Migrations in carbanions derived from ethers were extensively studied, but here we report only the essential points. Many different alkyl and aryl groups are known to undergo 1,2 migration in the Wittig rearrangement. The migration rate depends on the nature of the cation. (94, 197) This migration has been shown to be largely but not completely intramolecular, (198) occurring with partial racemization. (199, 200) The rate of migration is related to the dissociation energy of the hydrocarbon corresponding to the migrating radical. (174) These facts suggest that the Wittig rearrangement is a free-radical process, the carbanion dissociating to a radical-anion and a radical that recombine essentially in the solvent cage to give an alkoxide. (177)

 $C_6H_5CHOR \longrightarrow C_6H_5CHO^- + R \cdot \longrightarrow C_6H_5CHRO^-$

For migration of a phenyl group the formation of benzyne as an intermediate was excluded. (201) The migration of a vinyl group has been observed without isomerization of the double bond. (202)

$$C_6H_5CHOCH=CH_2 \longrightarrow C_6H_5CH(CH=CH_2)O^-$$

This result may be explained by fragmentation to aldehyde and vinyllithium. An alternative explanation involves an intramolecular addition of the carbanion to the double bond followed by opening of the epoxide. Ring opening is more rapid than rotation around the alpha - beta bond. (202)

$$C_{6}H_{5}CHO\mathring{C}H = \mathring{C}H_{2} \longrightarrow C_{6}H_{5}CHCHCH_{2}^{-} \longrightarrow$$

$$O$$

$$C_{6}H_{5}CHCH = CH_{2}$$

$$C_{6}H_{5}CHCH = CH_{2}$$

$$O^{-}$$

Both 1,4 and 1,2 shifts of carbanions prepared from allyl ethers were simultaneously observed. (203) They occur with 30% racemization for the carbanion of allyl α -phenylethyl ether. (204) A nmr study of this type of rearrangement showed that the rearranged products are not polarized. However, a short relaxation time may be the reason for the lack of observable polarization in the product of the Wittig rearrangements. Thus a free-radical path is not excluded. (205) Migrations of silyl and of phosphorus groups from oxygen or from sulfur to the anionic carbon have been described. (31, 36, 47, 50, 206, 207)

Carbanions derived from diallyl (56) and allyl benzyl ethers undergo

rapid rearrangements, among which [2,3]sigmatropic shifts may be concerted. (208-213) A cyclopropane group can replace the double bond. (214) The [2,3]-sigmatropic shifts occur suprafacially for both fragments. (211)

Dihydropyran gives with *n*-butyllithium a carbanion that reacts with trimethylsilyl chloride to yield two products (Eq. 24). 215

At higher temperature a [1,4]sigmatropic shift occurs to form the cyclopropylaldehyde **57**. A concerted mechanism is proposed for this rearrangement. **215**

Carbanions derived from diallyl thioethers and derivatives undergo [2,3]sigmatropic migrations even at -78° that are faster than the metalation. (180, 216)

 $R_2C = CHCH_2SCH_2CH = CR_2 \longrightarrow R_2C = CHCH(S^-)CR_2CH = CH_2$

However, under isomerization conditions (sodium ethoxide–ethanol) vinylic thioethers are produced beside the rearranged products. (217) The benzyl and allyl-N,N-dimethyldithiocarbamates with *n*-butyllithium give carbanions that are stable at -78° in tetrahydrofuran, but in the presence of hexamethylphosphoramide they undergo a 1,2 shift. (218)

 $C_6H_5\overline{C}HSC(S)N(CH_3)_2 \longrightarrow C_6H_5CH(S^-)C(S)N(CH_3)_2$

The carbanions **58** from 4-thiacyclohexene (with a phenyl substituent next to the sulfur) are stable at -78° . The carbanion **58** undergoes rearrangement to a

vinylcyclopropyl compound **59** at higher temperature in a proposed stepwise mechanism. (219, 220)

The allyl benzyl thioether **60** can give, depending on the substituent on the allyl radical, two different carbanions: the benzylic **61** that rearranges rapidly to thiolate **62**, and the allylic carbanion **63** that is stable at -78° . (180, 216, 221)

At higher temperature the allylic carbanion 63, redrawn as 63ϕ , undergoes various rearrangements. (216, 219)

$$C_{6}H_{5}CH_{2}SCHCHCH_{2} \xrightarrow{1.-15^{\circ}}_{2.CH_{3}I}$$

$$p-CH_{3}C_{6}H_{4}CH_{2}CH=CHSCH_{3} + C_{6}H_{5}(CH_{2})_{2}CH=CHSCH_{3}$$

$$trans (27\%) \xrightarrow{cis (0.5\%)}_{trans (5\%)}$$

$$+ C_{6}H_{5}CH_{2}CH(SCH_{3})CH=CH_{2}$$

$$(0.5\%)$$

The intriguing migration into the *para* position is also observed in a tetralin system **64**. (221)

Dibenzyl thioether gives at -78° a stable carbanion that rearranges at higher temperature essentially by two pathways: a [2,3]sigmatropic shift, analogous to the Sommelet rearrangement, and a [1,2]shift, similar to the Wittig rearrangement. The competition between both rearrangements depends on the temperature and the solvation of the cation. Higher temperatures favor the [1,2]shift and a solvating medium permits a [2,3]sigmatropic shift. (222, 223)

Decompositions and rearrangements can be controlled during metalation by variation in reaction conditions. Such variations include a more selective base, such as a lithium dialkylamide instead of *n*-butyllithium, a lower temperature, another solvent, or a different substituent at the heteroatom. On the other hand some of these reactions occur in high yield, while the yield of others can be improved by use of proper conditions. Their preparative value is still to be exploited.

5. Reactions with Electrophiles

A large variety of reagents have been used, but this is certainly a field where developments are to be expected; with new reagents new systems may be prepared. In this chapter we mention the common reagents only briefly and place more emphasis on the more exotic reagents.

Alkyl iodides, bromides, and chlorides are often used. Iodides and bromides are preferred because the chlorides are less reactive. Sometimes elimination

 $C_{6}H_{5}CHXR \xrightarrow{R'X'} C_{6}H_{5}CHR'XR$ $\xrightarrow{R'X'} R'CH_{2}CH=CHXR + CH_{2}=CHCHR'XR$ X = Heteroatom

instead of alkylation of the carbanion is the main reaction. (224) The rate of alkylation with a halide seems to vary from very fast, often described as instantaneous, to slow, with carbanions from allyl phenyl sulfoxides. (225) The rate may be increased by addition of hexamethylphosphoramide to the tetrahydrofuran solution. (226) Several intramolecular cyclizations of carbanions bearing a halogen have been observed and are illustrated by Eqs. 25-27. (190, 227, 228)

$$Br(CH_2)_3SCH_2CH=CH_2 \longrightarrow \langle S \rangle CH=CH_2$$
 (26)

$$(C_6H_5)_2P(O)CH(C_6H_5)(CH_2)_2C1 \longrightarrow (C_6H_5)_2PO \land C_6H_5$$
(27)

Tertiary halides have seldom been used, probably because of the prejudice

that elimination would be the main reaction. But in several instances the reaction with a *t*-butyl halide proceeds with good yield. 228a,b An electrophilic catalysis by the lithium cation has been proposed on the basis that after addition of 12-crown-4 the reaction is very slow. (228a) In one case neopentyl iodide and tosylate did not react. (228a)

Sulfonate esters are claimed to be inefficient in most cases. Toluenesulfonates and methanesulfonates are acidic, and proton transfer may proceed faster than alkylation.^{*} Benzenesulfonates could be more useful. (229) However, reaction at a sulfur atom may occur, as has been found with some carbanions. (230) Other sulfonate esters such as trifluoromethanesulfonates or fluorosulfonates are scarcely mentioned in the literature. Sulfonate esters have recently been used as electrophiles with stabilized carbanions. 231a,b

Aromatic halides are expected to be of little use, yet some reactions with bromobenzene are described in the literature. Most likely benzyne is produced by reaction of the carbanion with bromobenzene and adds to the excess carbanion (Eq. 28). (232, 233)

$$C_6H_5\overline{C}HP(O)(OC_2H_5)_2 \xrightarrow{C_6H_5Br} (C_6H_5)_2CHP(O)(OC_2H_5)_2$$
 (28)

A rearrangement is described that may result from a sigmatropic shift of an ylid carbanion. (234) Benzyne is postulated to react with the carbanion **65** to produce the ylid carbanion **66**, which undergoes a proton shift to another ylid carbanion **67**. Finally a sigmatropic shift of this latter ylid carbanion gives the anion **68**.

With carbanion **69** reaction with activated *p*-nitro- and 2,4-dinitrofluorobenzene occurs. (235)

$$C_{6}H_{5}\overline{C}(CN)O \longrightarrow O + p-FC_{6}H_{4}NO_{2} \longrightarrow C_{6}H_{5}COC_{6}H_{4}NO_{2}-p$$

Polychlorinated hydrocarbons, *e.g.*, carbon tetrachloride and tetrachloroethylene, react with carbanions to form chlorides. (236, 237) The reaction of methylene chloride may be of some interest for the synthesis of the substituted [1.1.0]bicyclobutane system (Eq. 29). (238)

$$(29)$$

Condensation of a halogenoboronate **70** with a carbanion gives access to alkyl boronate esters **71** and **72**. (239)

Trimethylsilyl chloride is commonly used to study carbanions. More complex chlorosilanes, as well as triethylbromogermane and triphenylchlorostannane, react with the carbanion derived from phenyldithiane. (240) These reagents open the area of diheterosubstituted systems. In addition, trimethylsilyl chloride reacts with alcoholates, and the resulting silyl ether anion can add electrophiles at the carbon atom. 240a,b

$$CH_{2} = CHCH(SiR_{3})O^{\xrightarrow{(CH_{3})_{3}SiCl}} CH_{2} = CHCH(SiR_{3})OSi(CH_{3})_{3}$$

$$CH_{2} = CHCH(SiR_{3})O^{\xrightarrow{E^{+}}} CH_{2}CHCHOSiR_{3} \xrightarrow{E^{+}} CH_{2} = CHCH(E)OSiR_{3}$$

Epoxides react with carbanions in the expected way. (142, 228, 241) Intramolecular cyclizations at the epoxide proceed in good yield, (190, 242) including the synthesis of a 14-membered ring system. (237)

The reaction of heterosubstituted carbanions with aldehydes and ketones is trivial except for several instances where other reactions follow, *e.g.*, carbanions alpha to phosphonate, phosphine oxide, or isonitrile groups. In the case of phosphonates and phosphine oxides, the alkoxide product of the first reaction undergoes a further reaction leading to an olefin with a simultaneous elimination of the phosphonate or phosphine oxide group and the alkoxide. (38, 243, 244) The intermediate can sometimes be isolated. (38)

$$(C_{6}H_{5})_{2}P(O)CH_{2}C_{6}H_{5} + (C_{6}H_{5})_{2}CO \xrightarrow{t \cdot C_{4}H_{9}OK} C_{6}H_{5}CH = C(C_{6}H_{5})_{2}$$

$$\uparrow t \cdot C_{4}H_{9}OK (C_{6}H_{5})_{2}P(O)CH(C_{6}H_{5})C(OH)(C_{6}H_{5})_{2}$$

Carbanions alpha to an isonitrile react with carbonyl compounds, yielding cyclic systems that may undergo cycloelimination to an olefin and isocyanate anion on heating. (21, 146, 245, 246)

$$C_{6}H_{5}\overline{C}HNC + R_{2}C = O \longrightarrow C_{6}H_{5}CH(NC)CR_{2}O^{-} \longrightarrow H$$

$$N^{C}O \longrightarrow N^{C}O \text{ or } C_{6}H_{5}CH = CR_{2} + OCN^{-}$$

$$C_{6}H_{5}CH - CR_{2} \longrightarrow C_{6}H_{5}CH - CR_{2}$$

A similar cyclization was described for the reaction of a carbanion alpha to a thioisonitrile. (22)

Another example of an elimination leading to an episulfide and an olefin is the reaction of the carbanion derived from a propargylic thiothiazoline with benzaldehyde. (247) The intermediate alkoxide attacks the thiazoline ring, and this results in a migration of the ring followed by intramolecular displacement (Eq. 30).

$$\begin{array}{cccc} & \overset{N}{\searrow} & S\bar{C}HC \equiv CR & \xrightarrow{C_6H_5CHO} & C_6H_5CHCHC \equiv CR \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & &$$

A dianion next to a sulfone reacts with aldehydes and ketones to give vinylic sulfones (Eq. 31). (122, 123)

 $C_6H_5SO_2C(Li)_2C_6H_5 + R_2C = O \longrightarrow C_6H_5SO_2C(C_6H_5) = CR_2$ (31)

N-Benzoylketimines react with carbanions alpha to a phosphonate (Eq. 32). (135)

$$C_{6}H_{5}CHP(O)(OR_{2}) + (C_{6}H_{5})_{2}C = NCO(C_{6}H_{5})_{2} \longrightarrow (C_{6}H_{5})CHP(O)(OR)_{2}C(C_{6}H_{5})_{2}NHCOC_{6}H_{5}$$
(32)

Conjugate addition of heterosubstituted carbanions to α , β -unsaturated electrophiles (ketones, esters, lactones, and nitro compounds) sometimes

occurs. (248-250) This addition is favored by the transformation to lithium cuprates. (251) The carbanions derived from allylic sulfones add to α , β -unsaturated esters in a 1,4 addition, which in turn is followed by a displacement of the sulfone by the carbanion next to the ester to yield a cyclopropane **73**. (252)

Phenyl sulfones give better yields of cyclopropanes than do methyl sulfones. In the latter proton transfer in the addition compound is possible, leading to a different cyclization, $74 \otimes 75$. (253)

Conjugate addition of a carbanion alpha to a sulfoxide or a sulfone to ethyl 4-bromo-2-butenoate leads to a cyclopropane. (253a)

$$Ar\bar{C}HSO_{n}(C_{6}H_{5})Li^{+} + BrCH_{2}CH = CHCO_{2}C_{2}H_{5} \longrightarrow C_{2}H_{5}O_{2}C \xrightarrow{CH(Ar)S(O)_{n}C_{6}H_{5}}$$
Acid chlorides have been scarcely used; however, on reaction with carbanions alpha to a phosphine oxide, ketones are produced in good yield (Eq. 33). (254)

$$(C_{6}H_{5})_{2}P(O)\overline{C}HC_{6}H_{5} + C_{6}H_{5}COC1 \longrightarrow (C_{6}H_{5})_{2}P(O)CH(C_{6}H_{5})COC_{6}H_{5}$$
(33)

Amides and diethyl carbonate are convenient reagents in several cases: (152, 255, 256)

$$C_6H_5\overline{C}HNC + CO(OC_2H_5)_2 \longrightarrow C_6H_5CH(CO_2C_2H_5)NC$$

 $(C_6H_5)_3Si\overline{CHCHCH}_2 + RCON(CH_3)_2 \longrightarrow$
 $(C_6H_5)_3SiCH=CHCH_2COR$

Reaction of esters with carbanions alpha to an isonitrile yields oxazoles. (256)

$$C_6H_5\overline{C}HNC + RCO_2CH_3 \longrightarrow R O$$

Nitro compounds can be prepared by reaction of nitrates with carbanions derived from phosphine oxides. (257)

$$(C_6H_5)_2P(O)\overline{C}HC_6H_5 + C_2H_5ONO_2 \longrightarrow (C_6H_5)_2P(O)CH(NO_2)C_6H_5$$

The reaction of disulfides with carbanions gives thioethers. (139, 258, 258b)

Sulfur has been used to produce a thiol in good yield. (258c)

 $(RO)_2 PO\overline{C}HC_6H_5Li^+ + S_8 \longrightarrow (RO)_2 POCH(SH)C_6H_5$

The addition of heterocyclic systems has been little explored: it is known, however that the anion from phosphol-3-ene oxide adds to the ring of nicotinoand isonicotinonitrile. (259)

Reaction of iron pentacarbonyl with the carbanion derived from benzaldehyde ethylene dithioacetal, followed by methyl iodide, gives 1-phenylpropane-1,2-dione (Eq. 34). (260)

$$C_{6}H_{5}CH \xrightarrow{S} \begin{array}{c} \frac{1. \ n \cdot C_{4}H_{u}Li}{2. \ Fe(CO)_{5}} \\ 3. \ CH_{3}I \end{array} \qquad C_{6}H_{5}COCOCH_{3}$$
(34)

 π -Allyl palladium derivatives activated by a phosphine can act as electrophiles. (261)

Oxygen, which often gives complex reaction mixtures, seems to be efficient in the reaction with the carbanion derived from a substituted phosphine oxide. (262)

There appear to be no examples of the use of a heterosubstituted carbanion to synthesize organometallic derivatives.

6. Regioselectivity

Allylic ambident carbanions contain two centers, alpha and gamma, where reaction can occur:

$$\begin{array}{cccc} RX \underbrace{CHCHCH_{2}}^{\alpha} & \xrightarrow{+E} & RX \underbrace{CHCH=}_{2} + RX CH = CHCH_{2} \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & &$$

The regioselectivity depends on a number of factors. An attempt has been made to correlate regioselectivity and electron distribution. (263) It is certainly unwise to draw conclusions about the location of the cation from the regioselectivity. In some cases the possibility of equilibration, leading to thermodynamic control of the reaction course, is excluded. Nevertheless it is necessary to point out here the factors that have an influence on the regioselectivity, without speculating on the structure of the carbanion. With a knowledge of these factors one may be able to direct the reaction to the desired position and this is clearly of preparative value. Among the known factors are the nature of the heteroatom, the substituent on the heteroatom, the substituent on the allylic system, the nature of the conjugated system, the electrophile, the counterion, and the solvation. The effect of temperature has been little explored, essentially because the temperature range is limited by the stability of the carbanion and by the solvent system.

In general, carbanions derived from allylic ethers and allylic amines have a strong tendency to react with alkyl halides at the gamma position. (19, 26, 32, 101-103, 113, 127, 264, 265)

$$(C_{2}H_{5})_{3}SiOCHCHCH_{2} + CH_{3}I \longrightarrow (C_{2}H_{5})_{3}SiOCH=CHCH_{2}CH_{3} + (C_{2}H_{5})_{3}SiOCH(CH_{3})CH=CH_{2}$$
$$(C_{6}H_{5})CH_{3}NCH\overline{C}HCH_{2} + CH_{3}I \longrightarrow (C_{6}H_{5})CH_{3}NCH=CHCH_{2}CH_{3} + (C_{6}H_{5})CH_{3}NCH(CH_{3})CH=CH_{2}$$
$$(I6:1)$$

The reason for the regioselectivity may well be the location of the cation at the gamma position, where it may be stabilized by chelation with the heteroatom. (90, 266) This agrees with the *cis* stereochemistry of the vinylic double bonds in the reaction products. A similar argument could explain the regioselectivity of the reaction from the dianion of allyl thiol. (43, 221, 267) The carbanions from allylic thioethers, sulfoxides, sulfones, and selenides tend to react with

alkyl halides at the alpha position. Those derived from boranes and silanes have not been explored sufficiently to conclude whether the regioselectivity is caused by the nature of the heteroatom or by other factors.

The nature of the substituent on the heteroatom may be of great influence; the different behavior of allylic thioethers and allylic thiols has already been mentioned. The influence of the substituent is not easy to understand. Certainly steric factors have some importance but do not explain all the observed facts. Also intramolecular solvation of the cation by the substituent may play a role. An increase in the size of the substituent, as expected, increases the proportion of alkylation at the gamma position. (20, 32, 42, 268)

$$\begin{cases} \dot{C}H_{2}CH\ddot{C}(CN)NR_{1}R_{2} + CH_{3}I \\ R_{1} = CH_{3}, R_{2} = C_{6}H_{5} \quad (7 = 100\%) \\ R_{1} = R_{2} = CH_{3} \left(\begin{pmatrix} \alpha = 50\% \\ \gamma = 50\% \end{pmatrix} \right) \end{cases}$$

The effect of the substituent on the heteroatom has been studied mostly with carbanions derived from allylic thioethers. The high reactivity at the alpha center of carbanions derived from allylic thioethers containing substituents that are able to chelate the lithium : 2-pyridyl, (269) imidazolyl, (46, 270) and dimethyl dithiocarbamate, (48) is still of questionable origin. A 4-pyridyl substituent yields a similar product ratio and intramolecular chelation is not possible. (8) The carbanion derived from allyl phenyl thioether gives at –78° an alpha : gamma ratio of 75:25 with methyl iodide whereas that derived from allyl benzyl thioether gives a ratio of 98:2. (8, 82, 221) A change in the amine group in allyl phosphonodiamides gives almost complete control over regioselectivity. The reaction with acetone changes from gamma to alpha when the substituent is changed from bisdimethylamino to dimethylethylenediamino. (42)

The introduction of an alkyl substituent at the alpha or gamma position decreases the reactivity of this center toward alkyl halides. For example, in allyl phenyl thioether the alpha:gamma ratio is 3:1, whereas in γ , γ

-dimethylallyl phenyl thioether and in 3-but-1-enyl phenyl thioether the alpha:gamma ratios are 98:2 and 70:30, respectively. (44, 144, 225, 271)

When the double bond is replaced by a triple or an allenic bond, the reaction tends to take place only at one center. Anions derived from propargylic ethers or from allenic ethers react at the gamma position with alkyl halides. (272-275) With the anion of propargylic thioketal,

the reaction occurs at the alpha position. With the carbanion

$$R_2\bar{C}C\equiv CXR \iff R_2C=C=\bar{C}XR$$

prepared from acetylenic compounds $R_2CHC \equiv CXR$ or from allenic compounds $R_2C = C = CHXR$, the reaction occurs almost exclusively at the alpha center, and the nature of the reagent has no influence. (273, 275-277) However, for the carbanion derived from ynamines $CH_3C \equiv CNR_2$ the alpha center is favored with small substituents at nitrogen and the gamma center with more hindered ones. (20)

The variation of regioselectivity can reflect not only the ambident nature of the carbanion, but also different mechanisms. The reaction may occur by an SE_2 mechanism through transfer of one electron followed by radical coupling or by cyclic addition, as may be the case for carbonyl compounds. Halides and ketones often exhibit opposite regioselectivity. (113, 264) The oxygenated

carbanion ROCHCHCH2reacts with the alkyl halides at the gamma center

and with cyclohexanone at both alpha and gamma, the ratio depending on the nature of the group R on the oxygen. (127) Regioselectivity was most extensively studied in thioethers. With alkyl halides there are several examples where the alpha:gamma ratio (greater than 1) depends to some extent on the nature of the halogen and on the nature of R. (82, 130, 219, 278, 279)

The reaction of ketones with these carbanions occurs essentially at the gamma position. (130, 278, 279)

The reaction with epoxides seems to occur at the same center as with halides for the allylic carbanion with nitrogen or sulfur, but some yields are low. (103, 278)

The alpha:gamma reactivity of the carbanions derived from allylic sulfoxides also depends on the nature of the halogen. (225, 271, 280) The regioselectivity

of reactions of the dichloroallyl carbanion CCl₂CHCH₂was explained by the

hard and soft acid-base concept: namely, soft acids such as acetone and cyclohexanone react at the soft center alpha and hard acids like hexafluoroacetone and benzophenone at the hard center gamma. (155, 159)

Leaving group dependence has been found for both silyl ether and dithiane-derived carbanions. The reagent with a soft leaving group reacts mainly at the gamma position for the silyl ether carbanion and at the alpha position for the dithiane carbanion. For reagents with a hard leaving group the alpha position is seen with the ether, while the gamma center is preferred for the dithiane. 231a,231b

The nature of the counterion may play an important role in the regioselectivity of the reactions. For the carbanion from allyltriphenylsilane the reactivity of the alpha center is enhanced with the magnesium derivative compared to the lithium salt of the carbanion. (108, 255, 281) Very often the addition of some salts to the carbanion solution is sufficient to change the regioselectivity. The reaction of the carbanions from methyl allyl ether or from phenyl α -methylallyl thioether with carbonyl compounds occurs mostly in the alpha position after addition of zinc chloride, whereas in the lithium derivative the alpha and gamma carbons have similar reactivity. (30, 42, 127, 219, 281a, 281b) The addition of cuprous salts to the lithium salt of isopropylallyl thioether anion changes completely the regioselectivity of the reaction with allyl halides. In the following example reaction occurs at the gamma position of both reactants. (282, 283)

The regioselectivity depends on the nature of the ion pair present. This was shown for the anion derived from phenyl γ , γ -dimethylallyl sulfide, where the reaction with acetone occurs essentially at the γ center in tetrahydrofuran. However, after addition of cryptand[2.2.2], which leads at least to dissociated ion pairs, the reaction occurs only at the alpha center. (279)

Through a reaction with boranes the regioselectivity may be essentially reversed. For the lithium carbanion derived from allyl isopropyl thioether the addition of borane leads to an "ate" complex. Reaction with carbonyls then occurs mainly in the alpha position but without the borane there is some preference for the gamma position. (284a) Reaction with γ , γ -dimethylallyl chloride and bromide occurs at the alpha center with inversion of an allyl unit. (284b)

The nature of the final product in some cases may not reflect the real alpha–gamma regiospecificity. For instance, the reaction of the reagent derived from allyl phosphonate with ketones seems to occur only at the alpha center because only the alpha product can lead to phosphate elimination and double bond formation. The gamma product cannot give this elimination reaction but may be converted to the alpha product by a dissociation–addition process. (151)

By suitable choice of medium, reactant, and structure of the anion and the cation, the regioselectivity may be partially controlled.

7. Stereochemistry

Little attention has been paid to the stereochemistry of the reactions of these carbanions.

The stereochemistry of the double bond in the final product of the reaction of an allylic carbanion with an electrophile may reflect either the absence of isomerization at the carbanion stage or isomerization to a single isomer. The carbanion **76** exists to a great extent if not exclusively in the (*Z*) configuration and gives by reaction at the gamma center essentially the (*Z*) enamine. (90, 102, 103, 264, 265, 284)

The carbanions derived from the two allylic thioethers **77** and **78** do not interconvert at -78° . (87)

The dianion derived from allyl mercaptan is in the (Z) configuration and by reaction with electrophiles gives mainly the (Z) vinylic thioether (43) along with a small percentage of the (E) isomer. (221)

$$HSCH_2CH=CH_2 \longrightarrow \left[\swarrow S^{-} \right] \longrightarrow S^{-} S^{-}$$

The silyl carbanion may exist essentially with (E) stereochemistry, as inferred from the stereochemistry of the reaction product with acetone. (284c)

$$(CH_3)_3SiCHCHCH_2Li^+ + CH_3COCH_3 \longrightarrow$$

 $(CH_3)_3SiCH=CHCH_2C(OH)(CH_3)_2$

The 1,2 migration occurring in carbanions derived from benzylic ethers proceeds to a large extent with retention of configuration of the migrating group. (200)

The carbanion resulting from the metalation of (S)(+)-benzyl- α -D-oxytrimethylsilane undergoes a rapid intramolecular rearrangement to the oxyanion of (S)(-)- α -hydroxy- α -trimethylsily- α -D-toluene. Thus the rearrangement occurs stereospecifically with 99% inversion at the benzyl carbon. The rapid migration of the silicon hinders the racemization of the carbanionic center. (285) A disrotatory cyclization of hydrobenzamide to amarine was previously discussed (p. 22). The transfer of stereochemistry of one center to another in a [1,4]sigmatropic shift is described for the carbanion **79**. (211)

Intramolecular reactions may have a very strong preference for one isomer. The cyclization of the carbanion derived from the allyl ether epoxide **47** to the alcohol **48** occurs not only with inversion as expected at the oxirane center, but also with strong induction at the carbanionic center as expected from steric hindrance. (190)

When two asymmetric centers are generated during a reaction, the ratio of diastereoisomers may differ from unity. An example is the reaction of acetophenone with the carbanion derived from

allylpentamethylphosphoramide, where the ratio varies from 20 to 0.5 depending on the addition of lithium bromide and the solvent. (286)

 $[(CH_3)_2N]_2P(O)N(CH_3)CHCHCH_2 + C_6H_5COCH_3 \longrightarrow$ $[(CH_3)_2N]_2P(O)N(CH_3)CH[C(CH_3)(OH)(C_6H_5)]CH=CH_2$

The preference for equatorial attack on conformationally rigid carbanions derived from a 1,3-cyclodithiane is assumed to be caused by a strong preference for the carbanion to be equatorial, (80) presumably because of stereoelectronic factors (Eq. 35). (78)

The asymmetry of the biphenyl system induces stereoselectivity in the reaction of carbanions derived from the N-nitrosoamine **80**. (25)

The most-studied examples of asymmetric reactions are those given by carbanions alpha to sulfoxides. Even in open-chain systems 1,2 induction is high. (51, 91, 92, 287-292) This was initially attributed to stereoselective factors,

 $\begin{array}{ccc} CH_3 & CH_3 \\ S-O & S-O \\ H-C-CH_3 + CH_3 - C-H \\ C_6H_5 & C_6H_5 \end{array}$

but clearly other factors such as internal solvation of the cation are also important. (91, 293) The racemization of the allylic sulfoxide limits this 1, 2 induction.

8. Transformations

The carbanions reviewed here are of great utility, since after reaction with electrophiles the products can often be easily transformed into other compounds, the heteroatom playing the role of a potential functional group. We consider here the migration of the activating functions, reductive removal, transformations into various other functions, and, finally, some ring-opening and ring-closure reactions.

The migration of a group in an allylic system makes possible the successive activation of two carbon atoms. Migration can be achieved by thermal rearrangement in the allyl dithiocarbamate (Eq. 36) (48) and by photochemical isomerization with the allylic phenyl thioether (Eq. 37). (294)

The heteroatom very likely increases the regioselectivity compared to that of the allylic anion, and in most cases this group will be removed later. The nitrogen-activating groups nitroso and isonitrile are transformed, respectively, to secondary or primary amines by acid treatment. (23, 152)

 $R_2 NNO \longrightarrow R_2 NH$

 $RNC \longrightarrow RNH_2$

The elimination of the heteroatom often occurs by lithium—amine reduction using ammonia–ethylamine as demonstrated for some benzylamines (101) and for allylic phenyl thioethers. (87, 138, 242, 295-297)

Raney nickel, which usually gives a complex reaction mixture with thioethers,

can be used for the reductive removal of the N-dimethyldithiocarbamate group. (298) Nickel boride seems to be useful for the removal of the phenyl thioether group. (298a)

Lithium aluminum hydride removes the phosphonate group, apparently without migration of the double bond (Eq. 38). (299)

 $CH_3CH = CHCHRP(O)(OC_2H_5)_2 \longrightarrow CH_3CH = CHCH_2R$ (38)

Addition of cupric salts to lithium aluminum hydride is necessary to promote the removal of the α -thiopyridyl group, again without a double bond shift (Eq. 39). (269, 300)

The displacement of an allylic or propargyl thioether or sulfone by tributyltin hydride occurs photochemically or by free-radical initiation in good yield. The acidic removal of the stannyl group leads to the olefin (Eq. 40). (300a, 300b)

The elimination of the heteroatom to give an olefin is a very useful reaction. The reaction product from the carbanion of an isonitrile and a carbonyl compound may undergo cyclization and then eliminate isocyanate to produce an olefin. (21, 146, 245, 246)

The final reaction product of carbanions from phosphine oxides or phosphonates with carbonyls is an olefin. (42, 262, 301-303)

With lithium as cation the hydroxy phosphine oxide can be isolated and converted to the olefin when treated with potassium *t*-butoxide. (38, 304) If imines instead of carbonyl compounds are used, the same reaction path occurs but under acid catalysis (Eq. 41). (135)

Under more vigorous conditions acetylenic compounds can be obtained from phosphine oxides (Eq. 42). (254)

$$C_6H_5COCH(C_6H_5)P(O)(C_6H_5)_2 \xrightarrow[I-C_4H_9OK]{280-300^\circ} C_6H_5C \equiv CC_6H_5$$
(42)

The thermal elimination of sulfenic acid from sulfoxides easily leads to olefins. The regioselectivity is influenced by substitution at the carbon atom from which hydrogen is being eliminated. (141) A similar reaction is described for selenoxides prepared *in situ* from selenides. (58, 59)

The elimination of sulfones takes place in the presence of base. (134) The reaction occurs easily if an activating group such as an ester is present, as illustrated in the synthesis of vitamin A (Eq. 43). (184, 305, 306)

Sulfoxides and selenoxides undergo a [2,3]sigmatropic shift to sulfenates and selenates, respectively. By reduction or oxidation the latter can be changed into alcohols (Eq. 44). (144, 271, 307, 308)

Propargyl selenoethers can be converted into α , β -unsaturated ketones (Eq. 45). (308a)

Displacements of sulfur in allylic thioethers can be achieved either by treatment with silica gel impregnated with silver nitrate or by treatment with methyl iodide in dimethylformamide–water (Eq. 46). (309, 310)

The thiophenyl group in an allyl phenyl thioether is displaced by a Grignard reagent in the presence of a nickel–phosphine complex (Eq. 47). (310a)

$$C_{6}H_{5}SCH_{2}CH = CH_{2} + RMgX \xrightarrow[(C_{6}H_{5})_{2}P(CH_{2})_{3}P(C_{6}H_{5})_{2}]{} RCH_{2}CH = CH_{2} (47)$$

Allylic thiothiazolines can be converted to amines by thermal rearrangement (Eq. 48) (311) and to allyl iodides by treatment with methyl iodide (Eq. 49). (270, 311)

The hydrolysis of enamines, vinylic ethers and thioethers, cyanohydrin ethers, ketene ketals, and ynamines to aldehydes, ketones, acids, esters, and other derivatives proceeds by catalysis with acid or mercuric salts (Eqs. 50–54). (20, 33, 105, 124, 136, 137, 264, 265, 282, 312-314)

$$\begin{array}{c} R(CH_{3}S)C = C = C(OC_{2}H_{5})_{2} & \stackrel{H^{+}}{\longrightarrow} \\ R(CH_{3}S)C = CHCO_{2}C_{2}H_{5} & \begin{array}{c} RCOCH_{2}CO_{2}C_{2}H_{5} \\ \end{array} \end{array}$$
(53)

 $n-C_5H_{11}CH(SCH_3)CH = CH(SCH_3) \xrightarrow{Hg^{2+}} n-C_5H_{11}CH = CHCHO$ (54)

The thio Claisen rearrangement with desulfurization yields a γ , δ -unsaturated aldehyde (Eq. 55). (129)

$$\underset{R}{\overset{S}{\longrightarrow}} \xrightarrow{RCH=CHCH_2CH_2CHO}$$
(55)

Epoxides and episulfides are obtained as the reaction products of carbanions derived from allylic thioethers (Eq. 56) and carbonyl compounds (Eq. 57). (267, 311)

Solvolytic cyclization to a cyclopropane is observed with a mesylate (Eq. 58). (315)

The condensation products of carbanions from propargylic ethers with ethylene oxide and carbonyl compounds cyclize to dihydrofurans spontaneously (Eq. 59) or in the presence of base (Eq. 60). (30, 316)

Epoxidation of the double bond may lead to new structural elements. The reaction product of allyltrimethylsilane carbanion with a ketone can be transformed into a substituted butyrolactone, (284c) and an allyl aryl sulfone to an allylic alcohol (Eq. 61). (316a)

$$C_{6}H_{5}SO_{2}CH_{2}C(CH_{3}) = C(CH_{3})_{2} \xrightarrow{RCO_{3}H} \xrightarrow{Na-Hg} (61)$$
$$CH_{2} = C(CH_{3})C(CH_{3})_{2}OH$$

Thermal extrusion of sulfur dioxide from sulfolene **81** leads to the diene **82**. (156)

Further transformations of the products derived from carbanions of isonitriles are described in a review. (317)

The ability to transform boranes to various functional groups makes it attractive to study carbanions derived from boranes. (318)

9. Applications

In this section we wish to illustrate the use of the heterosubstituted allylic carbanions in organic synthesis. We have selected only a few examples. It is most likely that because of the continuous developments in this field numerous new procedures will be added in the future.

The most important developments have occurred in the field of terpene synthesis. Activating groups Y linked to isoprenoid units can give rise to a carbanion that is alkylated with an isoprenoid halogenide. The activating group can then be removed either by reduction or by elimination.

The syntheses of squalene (Eq. 62), (87, 319) (*R*)-and (*S*)-squalene epoxide, (320) as well as analogs, (226, 321) and β -carotene (Eq. 63) illustrate this approach.

The synthesis of β -carotene was achieved using the following:

- 1. an isonitrile as an activating group (Y = NC) and condensing the carbanion with the aldehyde R = CHO (245) and
- 2. a phenyl sulfone (Y = $SO_2C_6H_5$) and condensing the carbanion with a chloride or a bromide (R = CH_2CI or CH_2Br). The phenylsulfonyl group was eliminated by treatment with base (Eq. 63). (322)

Ways of building the C₄₀ carotene skeleton other than C₂₀ coupling are $C_{20-n} + C_{2n} + C_{20-n}$ coupling using a phosphonate allylic anion (323) or a sulfonyl anion (Eq. 64). (324)

Vitamin A has been prepared as illustrated in Eqs. 65 and 66, (305, 306) and similar schemes exist for the corresponding ester (Eqs. 67 and 68). (184, 325)

This method provides several elegant solutions to the problem of terpene homologation exemplified by the syntheses of linalol (Eq. 69), all-*trans* geranylgeraniol (Eq. 70), ethyl geraniate (Eq. 71), and geraniol (Eq. 72). (130, 147, 296, 326, 327)

Several syntheses of *Cecropia* juvenile hormone **83** have used similar steps (Eq. 73). (130, 142, 143)

The synthesis of the sesquiterpenic aldehyde nuciferal **84** uses an allylic sulfoxide anion, the activating function being transformed into an allylic alcohol. (271)

An efficient preparation of terpenes containing a large ring, as exemplified by nephthenol **85** and cembrene A (**86**), trail-marking pheromones of termites, employs an intramolecular cyclization of an anion with epoxide. (242)

In contrast, the phenyl geranyl thioether epoxide leads to four- and five-membered ring systems. (327a)

An efficient intramolecular cyclization to a large ring has led to the synthesis of zearalenone. (327b) The ester group is likely shielded from inter-molecular reaction by the *ortho* methoxyl (Eq. 74).

The formation of cyclopropanes by the condensation of carbanions derived from sulfones with α , β -unsaturated esters has rather wide applications as in the synthesis of (±)-chrysanthemic ester, (145, 252) (±)-presqualene alcohol, (148) and (±)-prephytoene alcohol (Eq. 75). (328)

The preparation of the sex pheromones **87** of various insects uses the allylic rearrangement of an activating group so as to successively react both ends of the allylic system. (138)

A synthesis of prostaglandin $F_{2\alpha}$ 88 has been described. (329)

Finally, synthesis of alkaloids in the pavine, isopavine, and protoberberine group starts from dissymmetrical desoxybenzoins **89**, which are in turn prepared from amino cyanohydrins. (330)

The synthesis of optically active epoxides from β -hydroxy sulfoxides involves the use of the stereoselectivity of the carbanion alpha to the sulfoxides (Eq. 76). (331)

10. Experimental Considerations

The recommendations in this section should be followed in the procedures described below.

All glassware must be flame dried or dried in an oven at 120–150°. Argon or nitrogen is dried and freed from oxygen. The solvents, tetrahydrofuran, diethyl ether, and dimethoxyethane, of the best available grade, are dried first over molecular sieves and then distilled over lithium aluminum hydride or sodium benzophenone ketyl. It is preferable to avoid storage of dried solvents and to distill the solvents just before use. It is convenient, when using small volumes of anhydrous solvents, to have a distilling unit with continuous reflux where the solvent may be removed from the top through a stopcock or through a septum by means of a hypodermic syringe.

Caution: Hexamethylphosphoramide should be handled in a hood with very good ventilation.

n-Butyllithium in hexane as a commercial preparation may be used as such. The content is determined and the absence of halogen is checked by a silver nitrate reaction. *sec*-Butyllithium and *t*-butyllithium are also available from commercial firms and are of satisfactory quality for most uses. The *sec*-butyllithium may be prepared from *sec*-butyl bromide and lithium and purified by vacuum distillation. (126) **Solutions of lithium compounds in hydrocarbon solvents ignite in air and should be handled with care.** All reagents should be anhydrous and are often added as solutions in tetrahydrofuran. Tetramethylethylenediamine is distilled over calcium hydride: bp 121°.

11. Experimental Procedures

11.1.1.1.2-Methyl-4-thiophenyl-2-pentene

(Metalation with n-butyllithium in the presence of

1,4-diazabicyclo[2.2.2]octane.) (82) To a solution of prenyl phenyl sulfide (1.2 g, 6.73 mmol) and 1,4-diazabicylo[2.2.2]octane (0.9 g, 8 mmol) in tetrahydrofuran (20 mL) at –15° was added dropwise with stirring *n*-butyllithium (8 mmol) (2 *M* commercial preparation in hexane). The orange-red mixture was stirred 30 minutes at –15° before methyl iodide (0.5 mL) was added. The orange-red color was discharged instantaneously, the mixture was poured into water and extracted with ether, and the organic phase dried over sodium sulfate. Concentration under reduced pressure afforded 1.28 g (99%) of 2-methyl-4-thiophenyl-2-pentene (99% pure by glpc); nmr (CDCl₃) δ (ppm): 1.31 (d, 3 H, *J* = 6.5 Hz), 1.38 (d, 3 H, *J* = 1.5 Hz), 1.63 (d, 3 H, *J* = 1.5 Hz), 4.00 (d of q, 1 H, *J* = 6.5 and 9.5 Hz), 6.00 (d, 1 H, *J* = 9.5 Hz), and 7.16–7.55 (m, 5 H); mass spectrum *m/e*: 192 (M⁺) and 109 (base).

11.1.1.2. 3-(1' -Vinyl-1' -cyclohexyl)-thioisopropyl-1-propene

(Metalation with n-butyllithium and addition of cuprous iodide.) (283) To a solution of allyl isopropyl thioether (2.35 g, 20 mmol) in dry ether (70 mL) was added with stirring at -78° sec-butyllithium (20 mmol) (1.02 M solution in pentane). The mixture was warmed to -25° for 30 minutes, recooled to -78° , and treated with cuprous iodide (4.95 g, 26 mmol), after which a white suspension formed. The mixture was then stirred for 15 minutes at -78° and 2-cyclohexylidene-1-bromoethane (1.90 g, 10 mmol) was added. The suspension, which became dark after 10 minutes, was kept for 4 hours at -78° and then partitioned between dilute hydrochloric acid and ether. The organic phase was washed with water, dried, and freed of solvent. The remaining pale-yellow liquid was subjected to column chromatography (silica gel, 100 g) with *n*-hexane as an eluant to yield 3-(1' vinyl-1' -cyclohexyl)-1-thioisopropyl-1-propene (2.07 g, 97%), bp 145° (3 mm); ir (neat) cm⁻¹: 1640 (CH =CHS), 1612, 1000, 945, and 913 (CH₂ = CH); nmr (CCl₄) δ (ppm): 1.25 (d, 6 H, J = 7 Hz), 1.40 (broad s), 2.03 (d, 2 H, J = 7 Hz), 3.00 (d of q, 1 H, J = 7 and 7 Hz), 4.96 (d of d, 1 H, J = 2 and 17 Hz), 5.09 (d of d, 1 H, J = 2 and 12 Hz), 5.60 (d of t, 1 H, J = 7 and 15 Hz), 5.70 (d of d, 1 H, J = 12

and 17 Hz), and 6.02 (d, 1 H, J = 15 Hz).

11.1.1.3. (E)-1-N,N-Dimethyldithiocarbamate-2-pentene

(*Metalation with lithium diisopropylamine.*) (138) *n*-Butyllithium (24 mmol) (2 *M* commercial preparation in hexane⁻) was added at –55° to a solution of S-allyl-*N*,*N*-dimethyldithiocarbamate(3.55 g, 22 mmol) and diisopropylamine (3 g, 29 mmol) in tetrahydrofuran (volume not given). To the resulting deep-red solution was added (below –55°) a solution of ethyl iodide (4.26 g, 30 mmol) in

tetrahydrofuran (5 mL) and the solution was stirred. After 15 minutes the red color had completely disappeared. The solution was washed with 20% aqueous ammonium chloride, acidified with dilute hydrochloric acid, and again washed with 20% aqueous ammonium chloride. The solvent was removed and the product refluxed in chloroform (40 mL) for 3 hours. Distillation under reduced pressure afforded (*E*)-(1-*N*,*N*-dimethyldithiocarbamate)-2-pentene (93%), bp 117–121° (3.5 mm); ir cm⁻¹: 1500, 1258, 1150 [C(S)N(CH₃)₂], and 970 (CH = CH); nmr δ (ppm): 1.00 (t, 1 H), 3.40 (s, 3 H), 3.54 (s, 3 H), 3.94 (d, 2 H), 5.51, and 5.73 (d of t, 2 H, *J* = 15.3 Hz).

11.1.1.4. (Z)-1-Butenyl Phenyl Ether

(Metalation by potassium t-butoxide-n-butyllithium.) (89) To a suspension of potassium t-butoxide (11.8 g, 105 mmol) in petroleum ether (200 mL) and allyl phenyl ether (13.4 g, 100 mmol) was added dropwise over 20 minutes at -30° n-butyllithium (105 mmol) (1.6 M in hexane solution). The mixture was kept for 1 hour at -30° and then treated with methyl iodide (15.6 g, 110 mmol) so as to discharge the red color. Analysis by gas chromatography (20% SE 30, 2 m column, 100 or 180° within 8 minutes) showed that a mixture of (Z)-1-butenyl phenyl ether (44%), but-1-en-3-yl phenyl ether (16%), (Z)-1-heptenyl phenyl ether (13%), and hept-1-en-3-yl phenyl ether (2%) was obtained. Water was added, the organic layer was washed three times with 50 mL of water, dried, concentrated with a Widmer column, and distilled to afford 12.3 g of a liquid, bp 93–95° (14 mm). The pure components were obtained by glpc (15% Apiezon L, 6 m column, 166°). (Z)-1-Butenyl phenyl ether, ir (film) cm⁻¹: 1670 (C = C) and 1240 (C - O); nmr δ (ppm): 1.00 (t, 3 H, J = 7.5 Hz), 2.23 (d, 2 H, J = 7.5 Hz), 4.75 (q, 1 H, J = 7 Hz), 6.26 (d, 1 H, J = 6 Hz), and 7.0 (m, 5 H); mass spectrum m/e: 148 (M⁺) and 94 (base). But-en-3-yl phenyl ether, ir (film) cm⁻¹: 1660 (C = C), 1240 (C - O), 990, and 925 (CH = CH₂); nmr δ (ppm): 1.38 (d, 3) H, J = 6.5 Hz), 4.72 (d, 1 H, J = 6.5 Hz), 5.22, 5.70 (2 m, 3 H), and 7.0 (m, 5 H); mass spectrum m/e: 148 (M⁺) and 94 (base). Hept-1-en-yl phenyl ether, ir (film) cm^{-1} : 1670 (C = C) and 1240 (C - O); nmr δ (ppm): 0.90 (t, 3 H, J = 7 Hz), 1.4 (m, 6 H), 2.20 (q, 2 H, J = 7 Hz), 4.75 (q, 1 H, J = 7 Hz), 6.29 (d, 1 H, J = 7 Hz), and 7.0 (m, 5 H); mass spectrum m/e: 190 (M⁺) and 94 (base). Hept-1-en-3-yl phenyl ether, ir (film) cm⁻¹: 1240 (C - O), 990, and 903 (CH = CH₂); nmr δ (ppm): 0.92 (t, 3 H, J = 7 Hz), 1.5 (m, 6 H), 4.53 (q, 1 H, J = 6 Hz), 5.2, 5.7 (2 m, 3 H), and 7.0 (m, 5 H); mass spectrum m/e: 190 (m⁺) and 94 (base).

11.1.1.5. 2,7-Dimethyl-4-Phenylsulfonyl-2,6-octadiene

(*Metalation with potassium t-butoxide.*) (332) To a suspension of potassium *t*-butoxide (1.88 g, 16.8 mmol) in tetrahydrofuran (3 mL) was added at -10° over 2 minutes phenyl 3-methyl-2-butenyl sulfone (1.05 g, 5 mmol) in tetrahydrofuran (4 mL). Isoprenyl chloride (0.83 g, 8 mmol) in tetrahydrofuran (2 mL) was then added during 4 minutes. The mixture was stirred for 1.25 hours at -10° , 1 hour at 0° , and 2 hours at 18° , then poured into water (25 mL) and extracted with diethyl ether. The ethereal extract was dried over

magnesium sulfate and concentrated under reduced pressure to afford 1.38 g of 2,7-dimethyl-4-phenylsulfonyl-2,6-octadiene (99%) as a pale-yellow oil; nmr (CCl₄) δ (ppm): 1.21 (s, 3 H), 1.63 (s, 6 H), 1.70 (s, 3 H), 2–3.06 (m, 2 H), 3.56 (d of t, *J* = 4 and 10 Hz), 4.83 (m, 1 H), 5.0 (m, 1 H), and 7.43–7.90 (m, 5 H).

11.1.1.6. Ethyl α -lsocyanophenylacetate

(*Metallation with sodium hydride*). (152) A mixture of benzyl isocyanide (2.34 g, 20 mmol) and diethyl carbonate (2.36 g, 20 mmol) in dimethylformamide (10 mL) was gradually added to a suspension of sodium hydride (0.84 g, 22 mmol, 63% in oil) in dimethylformamide (15 mL) at 15° for 15 minutes under stirring. After 1 hour the reaction mixture was neutralized with acetic acid while cooling with an ice bath and the solvent was removed under reduced pressure below 50°. The residue was extracted with ethyl acetate and the extract washed with water and dried over magnesium sulfate. The solvent was evaporated under reduced pressure and the product purified by column chromatography on silica gel (80 g, kieselgel 0.2–0.5 mm, E. Merck). The paraffin present in the sodium hydride was removed by elution with *n*-hexane, and ethyl α -isocyanophenylacetate (2.38 g) was eluted with benzene (63% yield); ir (neat) cm⁻¹: 2130 (NC) and 1752 (CO₂C₂H₅); nmr (CCl₄) δ (ppm): 1.23 (t, 3 H), 4.18 (q, 2 H), 5.22 (s, 1 H), and 7.40 (s, 5 H).

12. Tabular Survey

The following tables contain examples where heterosubstituted allylic and benzylic carbanions were intermediates in an organic synthesis. The literature has been consulted to December 1979. The compounds are arranged according to their functionality, then in order of increasing carbon atoms.

Abbreviations are as follows:

[2.2.2]	1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo-[8.8.8]-hexacosane, ([2.2.2]cryptand)
9-BBN	9-borabicyclo[3.3.1]nonane
cat	catalytic
DABCO	1,4-diazabicyclo[2.2.2]octane
DDB	1,4-dimethylamino-2,3-dimethoxybutane
Diglyme	bis(2-methoxyethyl) ether
eq	equivalent
ether	diethyl ether
Hydrolysis conditions or reagents not given in the publication	
LDA	lithium diisopropylamide
LICA	lithium isopropylcyclohexyl amide
Liq	liquid
LTMP	lithium 2,2,6,6-tetramethylpiperidide
THF	tetrahydrofuran
THP	2-tetrahydropyranyl
TMEDA	N,N,N',N'-tetramethylethylenediamine
Ts	p-toluenesulfonate

13. Acknowledgment

We acknowledge the help of Mrs. D. Voegel who typed the manuscript. A major part of this chapter was written at the Centre Nicolas Grillet, Rhône-Poulenc Industries, Vitry-sur-Seine, France.

Table I. Amides
View PDF
Table II. Amines
View PDF
Table III. Boranes
View PDF
Table IV. Bromides
View PDF

Table V. Chlorides

View PDF
Table VI. Cyanohydrin Ethers

View PDF

Table VII. Dithiocarbamates

View PDF

Table VIII. Dithioesters

View PDF

Table IX. Dithioketals

View PDF

Table X. Ethers

View PDF

Table XI. Hemithioketals

View PDF

Table XII. Iminodithiocarbonate Diesters

View PDF

Table XIII. Isonitriles

View PDF

Table XIV. Ketals

View PDF

Table XV. Nitro Derivatives

View PDF

Table XVI. Nitrosoamines

Table XVII. Phosphates

View PDF

Table XVIII. Phosphinamides

View PDF

Table XIX. Phosphinates

View PDF

Table XX. Phosphine Oxides

View PDF

Table XXI. Phosphine Sulfides

View PDF

Table XXII. Phosphinothioates

Table XXIII. Phosphonamides

View PDF

Table XXIV. Phosphonates

View PDF

Table XXV. Phosphinodithioates

View PDF

Table XXVI. Phosphoramides

View PDF

Table XXVII. Selenides

View PDF

Table XXVIII. Selenoxides

Table XXIX. Silanes

View PDF

Table XXX. Sulfimines

View PDF

Table XXXI. Sulfonamides

View PDF

Table XXXII. Sulfones

View PDF

Table XXXIII. Sulfonic Esters

View PDF

Table XXXIV. Sulfoxides

View PDF

Table XXXV. Sulfoximines

View PDF

Table XXXVI. Tellurides

View PDF

Table XXXVII. Thiocarbamates

View PDF

Table XXXVIII. Thioethers

View PDF

Table XXXIX. Thioisonitriles

Table XL. Thioketones

View PDF

Table XLI. Thiols

View PDF

Table XLII. Thiophosphinates

TABLE I. AMIDES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	1	Refs.
C ₈	<i>1</i> -C ₄ H ₉ CONHCH ₂ CH=CH ₂	LDA (2 eq), diglyme, -78°	H ₂ O	$t-C_4H_9CONHCH=CHCH_2R$ A, R = H (78)		135c
			n-C4H9I, H2O	A, $R = C_4 H_9 - n$ (85)		135c
C,	$CH_3O_2CC(NCO) = C = CHSi(CH_3)_3$	LDA (excess), THF, -78°	C ₆ H ₅ CH ₂ Br	$CH_{3}O_{2}CC(CH_{2}C_{6}H_{5})[NHCON(C_{3}H_{7}-i)_{2}]C\equiv CSi(CH_{3})_{3}$	(-)	612
C10	C ₆ H ₅ CONHCH ₂ CH=CH ₂	LDA (2 eq), diglyme,	H ₂ O	$C_6H_5CONHCH=CHCH_2R$		1350
		-78	n-C.H.I. H.O	$A, R = C_4 H_0 - n$ (91)		135c
C.,	$C_{1}H_{2}CONHCH_{2}C(CH_{2})=CH_{2}$	LDA (2 ea), diglyme.	H-O	$C_{1}H_{2}CONHCH=C(CH_{2})CH_{2}B$		
CII	eg.130011101120(0113) 0112	-78°		A, R = H (90)		135c
			n-C4H9I, H2O	A, $R = C_4 H_9 - n$ (77)		135c
	$(CH_3)_3SiC \equiv CCH(CO_2CH_3)NHCO_2C_2H_5$	LDA, [(CH ₃) ₂ N] ₃ PO,	CH ₂ =CHCH ₂ Br,	$(CH_3)_3SiC \equiv CC(R)(CO_2CH_3)(NHCO_2C_2H_5)$		1000
		THF, -70°, 15 min	– 70°, 3 hr	$A, R = CH_2 = CHCH_2 (70)$		613
			n-C4H9I	$A, \mathbf{R} = \mathbf{C}_4 \mathbf{H}_9 \cdot \mathbf{n} (60)$		613
			CH = CHCO.CH	$A, R = CH_2C_6H_5$ (75) $A, R = CH_2CH_2CO_2CH_2$ (65)		613
	I-C.H.CONHCH.C≡CSi(CH.).	LDA or t-C.H.Li	CH ₂ =CHCH ₂ Br	t_{1} , $K = Ch_{2}Ch_{2}CO_{2}Ch_{3}^{2}$ (65)		015
	1 c4.14co/.11cn/20-05.(c113/3	TMEDA, THF, -78°	0.1.2 0.101.120	$A, R = CH_2 = CHCH_2 (65)$		612
			n-C4Hol	A, $R = C_4 H_{9} n$ (75)		612
			C6H5CH2Br	$A, R = CH_2C_6H_5 (90)$		612
			CH2=CHCO2CH3	$A, R = CH_2CH_2CO_2CH_3 (85)$		612
			CO_2 , then CH_2N_2	A, $t-C_4H_9CONHCH(CO_2CH_3)C\equiv CSi(CH_3)_3$		
						612
				A: 4, B: 1 (40)		012
	CH=CH ₂			$\langle - \rangle$		10/
C12	L N	LDA, THF, –78°	H ₂ O	(-)		196
	O CH.C.H.			O H C6H,		
				1993		

TABLE	I.	AMIDES	(Continued
TABLE	1.	AMIDES	(Continuea

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₂ (Contd.)	O CH ₂ CH=CH ₂	LDA, THF, -78°	H₂O	$O = \begin{pmatrix} C_6H_5 \\ CH = CH_2 \end{pmatrix} (97)$	196
C ₁₃	O CH=CH ₂	LDA, THF, –78°	H₂O	A, O H C_6H_5 + CH=CH,	196
C14	C6H3CONHCH2C6H3	LDA (2 eq), diglyme, - 78°	CH3I, H2O n-C4H9I, H2O C6H3CH2CI, H2O C6H3CH0, H2O	B, $O = \begin{pmatrix} H_{5} \\ H_{1} \\ H_{2} \\ H_{3} \\ C_{6}H_{5} \end{pmatrix}$ C ₆ H ₅ CONHCH(R)C ₆ H ₅ A, R = CH ₃ (79) A, R = C ₄ H ₉ -n (95) A, R = CH ₂ C ₆ H ₅ (79) A, R = CH(OH)C ₆ H ₅ (-)	135b 135b 135b 135b
	O CH ₂ C ₆ H ₅	LDA, THF, -78°, 1 min	D ₂ O	O CHDC ₆ H ₅ (-)	196
		LDA, THF, -78 [±] , warmed to room temperature	-	A, CH ₂ =C(CH ₃)C(CH ₃) ₂ CONHCH ₂ C ₆ H ₅ + B, O= \checkmark H C ₆ H ₅ A 1.1 B: 1 (00)	196
C16	C ₆ H ₅ CH ₂ C ₆ H ₅	LDA, THF, -78°	H ₂ O	$O = \begin{pmatrix} C_6 H_5 \\ C_6 H_5 \end{pmatrix} $ (93)	196
	$C_6H_5CONHCH_2C(C_6H_5)=CH_2$ $C_6H_5CONHCH(C_6H_5)CH=CH_2$	LDA (2 eq), diglyme, – 78° LDA (2 eq), diglyme,	H2O n-C4H9I, H2O H2O	$C_6H_5CONHCH=C(C_6H_5)CH_2R$ A, R = H (70) A, R = C_4H_9-n (75) C_6H_5CONHC(C_6H_5)=CHCH_2R	135c 135c
	\bigcirc	78°	<i>n</i> -C ₄ H ₉ I. H ₂ O	A, $R = H$ (99) A, $R = C_4 H_9 \cdot n$ (99)	135c 135c
	CH-CH	LDA, THF, -78°	H ₂ O	0 N C ₆ H ₅ (92)	196
C ₂₁	C ₆ H ₃ CON(CH ₂ C ₆ H ₅) ₂	LDA, THF, -78°, 4 min	CH ₃ I, -78°, 1 hr, then room temperature	н С ₆ H ₅ CON(CH ₂ C ₆ H ₅)CH(CH ₃)C ₆ H ₅ (81)	25
			CO_2 , -78°, 10 min CH_3COCH_3 , -78°, 1 hr	$C_6H_5CON(CH_2C_6H_4)CH(CO_2H)C_6H_5$ (98) $C_6H_5CON(CH_2C_6H_5)CH[C(OH)(CH_3)_2]C_6H_5$ (90)	25 25

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	c,	CH2=CHCH2NH2	n-C4H9Li (3 eq),	Hydrolysis	n-C ₆ H ₁₃ COC ₄ H ₉ -n (30)	551
	C ₆	€H3	n-C ₆ H ₁₄ , reflux n-C ₄ H ₉ Li, t-C ₄ H ₉ OK, n-C ₅ H ₁₂ , -50°	CH31	A. R N CH ₃ +	
66	C,	C ₆ H ₃ CH ₂ NH ₂ (CH ₃) ₂ C=C(CN)N(CH ₃) ₂	n-C₄H₀Li, ı-C₄H₀OK, n-C₄H₀Li (3 eq), n-C₄H₀Li, ceflux n-C₄H₀Li, low temperature	(CH3)3SiCl Hydrolysis CH31	B, CH_3 $A: 1, B: 1, R = CH_3$ (55) $A: 0, B: 100, R = Si(CH_3)_3$ (6) $C_6H_5COC_4H_9-n$, (20) $A, C_2H_5(CH_3)C=C(CN)N(CH_3)_2$ + B, CH_3=C(CH_4)C(CN)(CH_4)N(CH_4)_3	132a 132a 551 411
		(C ₂ H ₅) ₂ NC≡CCH ₃	n-C4H9Li, TMEDA, ether, 0°, 5.5 hr	(CH ₃) ₃ SiCl, 0°, 14 hr CH ₂ =CHCH ₂ Br, -40°, 0.5 hr	A: 9, B: 1 (-) $(C_2H_3)_2NC \equiv CCH_2Si(CH_3)_3$ (57) $(C_3H_3)_2NC(CH_2CH = CH_2) = C = CH_2$ unstable (-)	20 20
		NCH2CH=CH2	sec-C ₄ H ₉ Li (2 eq), THF, -78° then -10°, 2 hr	$n-C_4H_{\phi}Br$ (0.8 eq), -78° , then room temperature, 1 hr	A. \bigcirc vCH(R)CH=CH ₂ +	
				(CH ₃) ₃ SiCl	B, NCH=CHCH ₂ R A: 95, B: 5, R = C ₄ H ₉ -n (50) A: 95, B: 5, R = (CH ₃) ₃ Si (70)	614 614
				$C_{a}H_{a}CHO$ $C_{a}H_{a}CHO$ $C_{a}H_{a}COCH_{a}$ $C_{a}H_{a}COCH_{a}$	A:50, B: 50, R = $(CH(OH))$ A:46, B: 54, R = $C_6H_5CH(OH)$ (48) A:43, B: 57, R = $(CH_3)_2C(OH)$ (59) A:40, B:60, R = $C_6H_5C(CH_3)OH$ (74) A:45, B:55, R = (OH) (71)	614 614 614 614
			ZnCl ₂ added	\mathcal{O}	A: 5, B: 95, $R = $ (42)	614
6	C ₈	C ₆ H ₅ CH(CH ₃)NH ₂	n-C ₄ H ₉ Li (3 eq), n-C ₆ H ₁₄ , reflux	Hydrolysis	$n-C_4H_9C(C_6H_3)(CH_3)NH_2$ (25) + + (6) + + (6) $C_6H_3COC_4H_9-n$ (6) + - (20)	551
7	C.	C ₆ H ₃ CH ₂ N(CH ₃) ₂	n-C4H9Li, ether, 25",	D ₂ O	CH ₂ N(CH ₃) ₃ (0.94 D)	448
			24 hr C ₆ H ₅ Li, C ₆ H ₆ ,	C ₆ H ₅ CHO, ether,	$C_6H_5CH(OH)CH(C_6H_5)N(CH_3)_2$ (79)	544
			n-cgrig, tenos z in	$C_{6}H_{3}NCO$, ether, room temperature, 5 hr $C_{6}H_{3}CN$, $C_{6}H_{6}$, room temperature, 3 hr, then hydrolysis $C_{6}H_{3}COC_{6}H_{3}$	$C_6H_5CH_2N(CH_3)_2$ (18) $C_6H_5NHCOCH(C_6H_5)N(CH_3)_2$ (66) $C_6H_5COCH(C_6H_5)N(CH_3)_2$ (72) $C_6H_5CH[C(OH)(C_6H_5)_2]N(CH_3)_2$ (63)	544 544 544
			C ₆ H ₅ Na, C ₆ H ₆ , <i>n</i> -C ₈ H ₁₈ , reflux, 2 hr, then 20°, LiBr, ether,	(to	CH(C ₆ H ₃)N(CH ₃) ₂ OH (60)	544
			room temperature, 2.5 hr	Room temperature, 4 hr, then overnight CH ₃ COCH ₃	$C_{6}H_{5}CH_{2}N(CH_{3})_{2} (27) C_{6}H_{5}CH[C(OH)(CH_{3})_{2}]N(CH_{3})_{2} (41) C_{6}H_{5}CH[C(OH)(CH_{3})_{2}]N(CH_{3})_{2} (41) $	544

TADLE II. AMINES	TABLE	H.	AMINES
------------------	-------	----	--------

$C_{i,C,M,i} = C_{i,H_{i},M_{i}} = C_{i,H_{i},M_{i},M_{i}} = C_{i,H_{i},M_{i}} = C_{i,H_{i},M_{i},M_{i}} = C_{i,H_{i},M_{i}} = C_{i,H_{i},M_{i}} = C_{i,H_{i},M_{i}} = C_{i,H_{i},M_{i},M_{i}} = C_{i,H_{i},M_{i}} = C_{i,H_{i},M_{i},M_{i}} = C_{i,H_{i},M_{i},M_{i}} = C_{i,H_{i},M_{i}} = $	Refs
$C_{ij} = C(H_{ij})C=C(C)N(C;H_{j}), \qquad C(H_{ij})S(C)H_{ij}, \qquad C(H_{ij})S(C)H_{ij}, \qquad C(H_{ij})S(C)H_{ij}, \\ = C_{ij}H_{ij}COC_{ij}H_{ij}, \qquad C(H_{ij})S(C)H_{ij}, \\ = C_{ij}H_{ij}COC_{ij}H_{ij}, \\ = C_{ij}H_{ij}COC_{ij}H_{i$	18, 544
$C_{i} = \begin{pmatrix} (CH_{i})_{i}C=C(CN)NC_{i}H_{i}, \\ CH_{i}(CH_{i})_{i}NC=H_{i}, \\ CH_{i}(CH_{i})_{i}NC$	18
$C_{i_{1}} = \begin{pmatrix} (CH_{i})_{i_{2}} = C(CH_{i})_{i_{2}} = C(CH_{i})_{i_{2}} = C(H_{i})_{i_{2}} = C(H_{i})_{i_{2$	
$C_{i_{0}} \qquad (CH_{i_{1}})_{i_{0}}C=C(CN)N(C_{i}H_{i_{2}})_{i_{1}}$ $(CH_{i_{2}})_{i_{2}}C=C(CN)N(C_{i}H_{i_{2}})_{i_{2}}$ $(CH_{i_{2}})_{i_{2}}C=C(CN)N(C_{i}H_{i_{2}})_{i_{2}}$ $(CH_{i_{2}})_{i_{2}}C=C(CN)N(C_{i}H_{i_{2}})_{i_{2}}$ $(CH_{i_{2}})_{i_{2}}C=C(CN)N(C_{i}H_{i_{2}})_{i_{2}}$ $(CH_{i_{2}})_{i_{2}}C=C(CN)N(C_{i}H_{i_{2}})_{i_{2}}$ $(CH_{i_{2}})_{i_{2}}C=C(H_{i_{$	18 18 18
$c_{i,c} \qquad (CH_{i})_{i,c} C=C(CN)N(C,H_{i})_{i,c} \\ (CL_{i})_{i,j}NC=CCH_{i} \\ (i,c_{i},h_{i})_{i,k}NC=CCH_{i} \\ (i,c_{i},h_{i})_{i,k}NC=CH_{i} \\ (i,c_{i},h_{i})_{i,k} \\ (i,c_{i},h_{i})_{i,k} \\ (i,c_{i},h_{i})_{i,k} \\ (i,c_{i},h_{i})_{i,k} \\ (i,c_{i},h_{i})_{i,k} \\ (i,c_{i},h_{i})_{i,k} \\ (i,c_{i},h_$	18
$(CH_{3})_{2}C=C(CN)N(C_{3}H_{3})_{2}, (-)$ $(CH_{3})_{3}NC=CCH_{3}$ $(CH_{3})_{4}NC=CCH_{3}, (H_{3})_{4}, (CH_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (CH_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (CH_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (H_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (H_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (H_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (H_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (H_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (H_{3})_{4}NC=CH_{3}, (H_{3})_{4}, (H_{3})_{4}NC=CH_{4}, (H_{4})_{4}NC=CH_{4}, (H_{4})_{4}NC=$	18
$(i-C_{3}H_{1})_{2}NC \equiv CCH_{3}$ $(i-C_{3}H_{2})_{3}NC \equiv CCH_{3}$ $(i-C_{3}H_{3})_{3}NC \equiv CCH_{3}$	411
$C_{10} = (C_{1,1}C_{1,1}C_{1,1}C_{1,2}C_{1,1}C_{1,1}C_{1,2}C_{1$	20
$C_{10} \qquad (+C_{3}H_{3})_{3}(CH_{3}K_{3}, THF. (CH_{3})_{3}(CH) \qquad (+C_{4}H_{3})_{3}(CH) \qquad (+C_{4}H_{3}$	20
$C_{i_{0}} \qquad $	
$\begin{array}{cccc} \dot{C}H_{3} & & & \dot{C}H_{3}C(H_{3})NCH=CHCH_{3} \ \epsilon is & & (-C_{4}H_{3}CK:n-C_{4}H_{4}Li & (CH_{3})_{3}SiCl & & C_{4}H_{3}(CH_{3})NCH=CHCH_{3}Si(CH_{3})_{3} \ \epsilon is \ (71) \\ 1:1, perroleum ether, & 0', 30 min, then & room temperature, \\ 30 min & & (-C_{4}H_{3}CK-n-C_{4}H_{4}Li & CH_{3}I & A, C_{6}H_{3}(CH_{3})NCH(CH_{3})CH=CH2_{4} \\ & & (-C_{4}H_{3}CK-n-C_{4}H_{4}Li & CH_{3}I & A, C_{6}H_{3}(CH_{3})NCH=CHC_{4}H_{5} \\ & & (-C_{4}H_{3}CK-n-C_{4}H_{4}Li & CH_{3}I & A, C_{6}H_{3}(CH_{3})NCH=CH2_{4}H_{5} \\ & & (-C_{4}H_{3}CK-n-C_{4}H_{4}Li & CH_{3}I & A, C_{6}H_{3}(CH_{3})NCH=CH2_{4}H_{5} \\ & & (-C_{4}H_{3}CK-n-C_{4}H_{4}Li & CH_{3}I & A, C_{6}H_{3}(CH_{3})NCH=CH2_{4}H_{5} \\ & & (-C_{4}H_{3}CK-H_{3})NCH=CHC_{4}H_{5} \\ & & (-C_{4}H_{3}CK-H_{3})NCH=CHC_{4}H_{5} \\ & & (-C_{6}H_{3}(CH_{3})NCH=CHC_{4}H_{5})CH=CH_{2} \\ & & (-C_{6}H_{5}(CH_{3})2 & (-C_{6}H_{5}(CH_{3})NCH(CHOHC_{6}H_{5})CH=CH_{2} \\ & & (-C_{6}H_{5}(CH_{3})2 & (-C_{6}H_{5}(CH_{3})CH=CHC_{4}H_{5})CH=CH_{2} \\ & & (-C_{6}H_{5}(CH_{3})CH=CHC_{5}H_{1},n \\ & & (-C_{6}H_{5}(CH_{3})CH=CHC_{5}H_{5})CH=CH_{2} \\ & & (-C_{6}H_{5}(CH_{3})CH=CHC_{5}H_{5})CH=CH_{2} \\ & & (-C_{6}H_{5}(CH_{3})CH=CHC_{6}H_{5})CH=CH_{2} \\ & & (-C_{6}H_{6}(CH_{3})CH=CHC_{6})CH_{5} \\ $	132a
$CH_{2}=CHCH_{3}N(CH_{3})C_{8}H_{3}$ $i^{O} URIN i, i, percendent ether, 0'', 30 min, hen room temperature, 30 min *C_{4}H_{0}Br i^{C}_{4}H_{3}(CH_{3})NCH(CH_{3})CH=CH_{2} i^{C}_{4}H_{3}(CH_{3})NCH=CHCH_{3}S(CH_{3})S_{3}(71) i^{C}_{4}H_{3}(CH_{3})NCH=CHCH_{3}S(CH_{3})S_{3}(71) i^{C}_{4}H_{3}(CH_{3})NCH=CHCH_{3} i^{C}_{4}H_{3}(CH_{3})CH=CHCH_{3} i^{C}_{4}H_{4}(H_{3})CH=CHCH_{3} i^{C}_{4}H_{4}(H_{3})CH=CHCH_{3} i^{C}_{4}H_{4}(H_{3})CH=CHCH_{3} i^$	103
0°, 30 min, then room temperature, 30 min $n-C_4H_{\eta}Br$ $n-C_4H_{\eta}$	103
30 min $n-C_{4}H_{9}Br$ $A: L, B: 16 (75) A: C_{6}H_{5}(CH_{3})NCH(C_{4}H_{9}-n)CH=CH_{2}+B, C_{6}H_{5}(CH_{3})NCH=CHC_{5}H_{11}-ncis A: 1, B: 14.5 (69) CH_{2}C(CH_{3})_{2} (70)ON(CH_{3})C_{6}H_{5}C_{6}H_{5}CHO A: C_{6}H_{5}(CH_{3})NCH(CHOHC_{6}H_{3})CH=CH_{2}B, C_{6}H_{5} - O(CH_{3})_{3}SiCl A: 1, B: 1.11 (60)(CH_{3})_{3}SiCl C_{6}H_{5}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} (71)disH_{2}O A: C_{6}H_{5}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} (71)disH_{2}O A: C_{6}H_{5}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} (71)disH_{2}O A: C_{6}H_{5}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} (71)disH_{2}O A: C_{6}H_{5}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} (71)disA: 1, B: 14 (81)D_{2}O A: C_{6}H_{5}(CH_{3})NCHDCH=CH_{2}$	
B, $C_{6}H_{3}(CH_{3})NCH=CHC_{5}H_{11}-n$ Cis A: 1, B: 14.5 (69) (70) (71) (7	103
$\begin{array}{c} CH_{2}C(CH_{3})_{2} \\ O \\ O \\ C_{6}H_{5}CHO \end{array} \qquad (70) \\ (CH_{3})C_{6}H_{5} \\ C_{6}H_{5}CHO \end{array} \qquad (70) \\ + \\ C_{6}H_{5}CHO \\ (CH_{3})_{3}SiCl \\ (CH_{3})_{3}SiCl \\ (CH_{3})_{3}SiCl \\ H_{2}O \\ H_{2}O \\ H_{2}O \\ (CH_{3})_{3}NCH = CHCH_{2}Si(CH_{3})_{3} (71) \\ C_{6}H_{5}(CH_{3})NCH = CHCH_{2}Si(CH_{3})_{3} (71) \\ C_{6}H_{5}(CH_{3})NCH = CHCH_{2}Si(CH_{3})_{3} (71) \\ C_{6}H_{5}(CH_{3})NCH = CHCH_{3} \\ C_{6}H_{5}(CH_{3})NCH = CHC$	
$C_{6}H_{5}CHO$ $C_{6}H_{5}CHO$ $A, C_{6}H_{5}(CH_{3})NCH(CHOHC_{6}H_{5})CH=CH_{2}$ $+ N(CH_{3})C_{6}H_{5}$ $B, C_{6}H_{5} - (-) N(CH_{3})C_{6}H_{5}$ $A: I, B: I, II (60)$ $A: I, B: I, II (60)$ $C_{6}H_{5}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} (71)$ $C_{6}H_{5}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} (71)$ $C_{6}H_{5}(CH_{3})NCH=CHCH_{3}$ $B, C_{6}H_{5}(CH_{3})NCH=CHCH_{3}$ $A: I, B: I4 (81)$ $D_{2}O$ $A, C_{6}H_{5}(CH_{3})NCHDCH=CH_{2}$ $+ C_{6}H_{5}(CH_{3})NCHDCH=CH_{2}$ $A: C_{6}H_{5}(CH_{3})NCHDCH=CH_{2}$ $A: C_{6}H_{5}(CH_{3})NCHDCH=CH_{2}$	102
$\begin{array}{cccc} & & & & & & & \\ B_{s} & & & & & & \\ C_{6}H_{5} & & & & & \\ & & & & & \\ C_{6}H_{5} & & & & \\ C_{6}H_{5}(CH_{3})C_{6}H_{5} \\ & & & & \\ A_{s}: 1, B: 1.11 & (60) \\ & & & & \\ C_{6}H_{5}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} & (71) \\ & & & & \\ C_{6}H_{5}(CH_{3})NCH=CHCH_{2} \\ & & & & \\ B_{s}C_{6}H_{5}(CH_{3})NCH=CHCH_{3} \\ & & & \\ B_{s}C_{6}H_{5}(CH_{3})NCH=CHCH_{3} \\ & & & \\ A_{s}: 1, B: 14 & (81) \\ D_{2}O & & & A_{s}C_{6}H_{5}(CH_{3})NCH=CH_{2} \\ & & & \\ & & & \\ + & & & \\$	103
$\begin{array}{c} (CH_{3})_{3}SiCl & A: l, B: l.11 (60) \\ C_{6}H_{3}(CH_{3})NCH=CHCH_{2}Si(CH_{3})_{3} (71) \\ cis \\ H_{2}O & A, C_{6}H_{3}(CH_{3})NCH_{2}CH=CH_{2} \\ B, C_{6}H_{3}(CH_{3})NCH=CHCH_{3} \\ cis \\ A: l, B: l4 (81) \\ D_{2}O & A, C_{6}H_{3}(CH_{3})CHDHCH=CH_{2} \\ + cis \\ A: c_{6}H_{3}(CH_{3})CHDHCH=CH_{2} \\ + cis \\ A: c_{6}H_{3}(CH_{3})CHDHCH=CH_{2} \\ + cis \\ +$	
H ₂ O H ₂ O A, C ₆ H ₃ (CH ₃)NCH ₂ CH=CH ₂ + B, C ₆ H ₅ (CH ₃)NCH=CHCH ₃ cis A: 1, B: 14 (81) D ₂ O A, C ₆ H ₃ (CH ₃)NCHDCH=CH ₂ +	103
$D_{2}O$ $B, C_{6}H_{5}(CH_{3})NCH=CHCH_{3}$ Cis $A: 1, B: 14 (81)$ $A, C_{6}H_{5}(CH_{3})NCHDCH=CH_{2}$ $+$	103
D_2O $A: 1, B: 14 (81)$ $A, C_6H_3(CH_3)NCHDCH=CH_2$ $+$	
D_2O A, $C_6H_3(CH_3)NCHDCH=CH_2$	
	103
$\mathbf{B}, \mathbf{C}_{6}\mathbf{H}_{3}(\mathbf{CH}_{3})\mathbf{NCH} = \mathbf{CHCH}_{2}\mathbf{D}$	
A: I, B: 13.8 (80)	

TABLE II. AMINES (Continued)

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C10	CH2=CHCH2N(CH3)C6H5	D ₂ O	C6H3CHO, (CH3)3SiCl	A, C ₆ H ₃ (CH ₃)NCH[CH(OSi(CH ₃) ₃)C ₆ H ₅]CH=CH ₂	103
	(Contd.)				$ \begin{array}{l} & + \\ B_{s} C_{6} H_{3} (CH_{3}) NCH = CHCH_{2} CH[OSi(CH_{3})_{3}] C_{6} H_{5} \\ & cis \\ A_{1} B_{1} B_{2} L_{2} \\ & (66) \end{array} $	
70				CH3COCH3	$\bigvee_{i=1}^{O} N(CH_3)C_6H_5 $ (8)	103
					A, $C_6H_5(CH_3)NCH_2CH=CH_2$ +	
					B, $C_6H_3(CH_3)NCH = CHCH_3$	
		<i>n</i> -C ₅ H ₁₁ C≡CCH ₂ N(CH ₃) ₂	n-C4H9Li, THF, - 70°, 1 hr ZnI ₂ , THF, - 70°, 1 hr	C6H3CHO	A: 1, B: 6 (73) $n-C_{5}H_{11}C \equiv CCH[CH(OH)C_{6}H_{3}]N(CH_{3})_{2}$ (40)	30
		(CH ₃) ₃ SiC≡CCH ₂ NO	n-C ₄ H ₉ Li, THF, -70°, 1 hr, ZnI ₂ , THF, -70°, 1 hr	C6H3CHO	(CH ₃) ₃ SiC≡CCH[CH(OH)C ₆ H ₃]N (30)	30
	C ₁₁	CH ₃ CH=C(CN)N(CH ₃)C ₆ H ₅	LDA, THF, - 78°, 3 hr	CH ³ I	$RCH_2CH=C(CN)N(CH_3)C_6H_5$ A, R = CH ₃ (76)	268
				C ₆ H ₅ CHO, then H ₂ O CH ₃ COCH ₃ , then H ₂ O C ₆ H ₅ COC ₆ H ₅ , then (CH ₃) ₃ SiCl	A, R = $C_6H_5CH(OH)$ (81) A, R = $(CH_3)_2C(OH)$ (63) A, R = $(C_6H_5)_2C[OSi(CH_3)_3]$	268 268 268
		~~			CH ₃ Si(CH ₃) ₃	
		CH,	(CH ₃) ₃ SiCH ₂ K, THF, -80°	(CH ₃) ₃ SiCl	(47) I CH ₃ Q	132a
			KOH, (−C₄H9OH	CH2=CHCN	C(CN)CH ₂ CH ₂ CN ⁽⁹⁰⁾	489
	C ₁₂	C ₆ H ₅ CH=CHCH(CN)N(CH ₃) ₂	LDA, THF, – 78°, 3 hr	CH31	$A, C_6H_5CH(CH_3)CH = C(CN)N(CH_3)_2$	268
				<i>i</i> -C ₃ H ₇ I	B, C ₆ H ₅ CH=CHC(CH ₃)(CN)N(CH ₃) ₂ A: 50, B: 50 (93) A, C ₆ H ₅ CH(C ₃ H ₃ -ri)CH=C(CN)N(CH ₃) ₂ +	268
71					B, C ₆ H ₃ CH=CHC(C ₃ H ₇ -i)(CN)N(CH ₃) ₂ A: 73, B: 27 (75)	
		O NCH(CN)C ₆ H ₅	NaH, (CH ₃) ₂ NCHO, room temperature	D ₂ O, CO ₂	0NCD(CN)C6H5 (92)	343
				O ₂	O NCOC ₆ H ₅ (-)	343
		CH ₃ CH=C(CO ₂ CH ₃)N(CH ₃)C ₆ H ₅	LDA, THF, -12°, 2.5 hr	CH3I	$C_2\overline{H_3CH} = C(CO_2CH_3)N(CH_3)C_6H_6$ (80)	268
			LDA, THF, [(CH ₃) ₂ N] ₃ PO, - 12°	CH ₃ I, room temperature, 2 hr	* (80)	268
		NC≡CCH3	<i>t</i> -C ₄ H ₉ Li, TMEDA, ether, - 78°, then 0°, then - 50°, then 0°, 30 min	CH ₂ =CHCH ₂ I, 0°, overnight	NC≡CCH₂R	20
				(CH ₃) ₃ SiCl, 0°, overnight CH ₃ 1, 0°, overnight <i>n</i> -C ₄ H ₉ I, 0°, overnight	A, $R = CH_2CH==CH_2$ (45) A, $R = (CH_3)_3Si$ (60) A, $R = CH_3$ (35) A, $R = C_4H_9 \cdot n$ (50)	20 20 20

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₄		n-C4H9Li, n-C6H14. -65°	СН3Г Н2О	(95)	19
		ONCH(CN)C ₆ H ₃ (OCH ₃) ₂ -m _* p	NaH, (CH ₃) ₂ NCHO, room temperature	D ₂ O, CO ₂	$O_{\rm NCD(CN)C_6H_3(OCH_3)_2-m,p} (99)$	343
74		ONCH(CN)C6H4N(CH3)2-P	NaH, (CH ₃) ₂ NCHO,	D2O, CO2	QNCD(CN)C6H4N(CH3)2-P (94)	343
		$m,p-(CH_3O)_2C_6H_3CH(CN)N(C_2H_5)_2$	NaH, (CH ₃) ₂ NCHO, room temperature,	C ₆ H ₅ CH ₂ Cl	$m_{P}(CH_{3}O)_{2}C_{6}H_{3}C(CN)[N(C_{2}H_{5})_{2}]R$ A, R = CH ₂ C ₆ H ₅ (-)	330
			l hr	m,p-(CH3O)2C6H3CH2Cl o-ClC6H4CH3Cl p-ClC6H4CH3Cl p-ClC6H4CH2Cl p-O3NC6H4CH2Cl p-CH3OC6H4CH2Cl o-O3NC6H4CH2Cl	A. $R = CH_2C_6H_3(OCH_3)\cdot m.p$ (-) A. $R = CH_2C_6H_4Cl \cdot o$ (-) A. $R = CH_2C_6H_4Cl \cdot p$ (-) A. $R = CH_2C_6H_4OL \cdot p$ (-) A. $R = CH_2C_6H_4OCH_3 \cdot p$ (-)	330 330 330 330 330 330 330
	C15	$\left[\left\langle \mathcal{A}_{O}^{L}\right\rangle _{CH=N}\right]_{2CH}$	KNH ₂ , NH ₃ (liq), reflux, 1 hr	H ₂ O		187
		$ \begin{array}{c} $	<i>t</i> -C₄H₀OK, <i>t</i> -C₄H₀OH. reflux, 13 hr	2	$ \begin{array}{c} & H \\ & & $	187
		CH ₂ CH=CH ₂	n-C ₄ H ₉ Li (1.1 eq), TMEDA (1.1 eq), ether, -15°, 1.5 hr	RX	$A_{1} \qquad \qquad$	102
				$RX = D_2O$ $RX = i \cdot C_3H_7CI$ $RX = n \cdot C_4H_6CI$ $RX = C_6H_5CH_2CI$ $RX = CH_3COCH_3$ $RX = (C_6H_5)_2CO$	(H=CHCH ₂ R A: 25, B: 75; cis: 85, trans: 15 (−) A (3), B (80) A (6), B (80) A (5), B (75) A (23), B (38) A (25), B (60)	102
21			n-C₄H₀Li, TMEDA or DABCO	(CH ₃) ₂ C=CHCH ₂ Cl		100
15		C1126113	NaNH2, NH3 (liq)	(CH ₃) ₂ C=CHCH ₂ Cl	A. $R = CH_{1}C_{6}H_{3})CH_{2}CH=C(CH_{3})_{2}$ (80) A. $R = CH_{1}C_{6}H_{3}$ (30) + +	100
					A, $R = CH(C_6H_3)CH_2CH=C(CH_3)_2$ (60) + A, $R = C[CH_2CH=C(CH_3)_3]C_6H_3$ (10)	
		СН.С.Н.	NaNH2. NH3 (liq)	(CH ₃) ₂ C=CHCH ₂ Cl, then aromatization	A, R = C[CH ₂ CH=C(CH ₃) ₂] ₂ C ₆ H ₅ (10) + A, R = CH(C ₆ H ₅)CH ₂ CH=C(CH ₃) ₂ (-)	100
		(C ₆ H ₃ CH ₂) ₂ NCH ₃	<i>n</i> -C ₄ H ₉ Li, ether, 25°, 48 hr	D20	CH ₃ N(CH ₃)CH ₃ D 1.02 D	448
		C ₆ H ₃ CH=CHCH(CN)N	LDA, THF, -78°, 3 hr	СН³і	A, C ₆ H ₅ CH(CH ₃)CH=C(CN)N	268
					+ B. C ₆ H ₃ CH=CHC(CH ₃)(CN)N A: 44, B: 56 (87)	

LL

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₆ (Contd.)	C ₆ H ₃ (CH ₃)NC(C ₆ H ₅)=CHCH ₃	n-C4H9Li, THF, [(CH3)2N]3PO, 0°	CH ₃ I, 0°, 1 hr C ₆ H ₃ CHO, – 78°, 1 hr CH ₃ COCH ₃ , – 78°, 1 hr (CH ₃) ₂ CHCH ₂ , 0°, 1 hr	A, $R = CH_3$ (85) A, $R = CH(OH)C_2H_5$ (-) A, $R = C(OH)(CH_3)_2$ (-) A, $R = CH_2C(OH)(CH_3)_2$ (85)	113 113 113 113
C1,	C ₆ H ₅ CH=CHCH(CN)N(CH ₃)C ₆ H ₅	LDA, THF, - 78°, 2 hr	CH ₃ I <i>i</i> -C ₃ H ₇ Br	$C_6H_5CH(CH_3)CH=C(CN)N(CH_3)C_6H_5$ (74) $C_6H_5CH(C_1H_7-t)CH=C(CN)N(CH_3)C_6H_5$ ($-$)	268 268
	CH ₂ CH=C(CH ₃) ₂	n-C ₄ H ₉ Li (1.1 eq), TMEDA (1.1 eq), ether, -15°, 15 hr	RX	$A_{1} \underbrace{\bigcap_{i=1}^{N}}_{CHRCH=C(CH_{3})_{2}}$	
			$RX = D_2O$ $RX = i \cdot C_3H_7CI$ $RX = n \cdot C_4H_9CI$ $(CH_3)_2C = CHCH_2CI$	B, $CH=CHCR(CH_3)_2$ A: 1, B: 0 () A (0), B (6) A (12), B (15) A (3), B (23)	102
		Na, NH3 (liq)	(CH ₃) ₂ C=CHCH ₂ Cl	(70)	101
		n-C₄H9Li, TMEDA or DABCO	(CH ₃) ₂ C=CHCH ₂ Cl		
	~ ~	n-C4H9Li (0.5 eq), DABCO	-	$ \begin{array}{c} {}^{L}H_{2}CH = C(CH_{3})_{2} \\ A (3), B (20), C (15), D (-) \\ A: 10, B: 40, C: 50 (-) \end{array} $	101 101
	CH_NCH_CH=CH.	n-C ₄ H ₉ Li, THF, room temperature, 1 day	D2O	$\bigcup_{D} \bigcup_{N(CH_3)CH_2CH=CH_2} (-)$	195
		n-C4H9Li, THF, reflux, 7 hr	H ₂ O	(44)	195
	$C_6H_3(CH_3)NC(C_6H_3)=C(CH_3)_2$	n-C4H9Li, THF. [(CH3)2N]3PO, 0°.	СН3	$CH_3NH^{CH_2CH}=CH_2$ $C_6H_3(CH_3)NC(C_6H_5)=C(CH_3)(C_2H_5)$ (70)	113
	$C_6H_3(CH_3)NC(C_6H_5)=CHC_2H_5$	24 hr n-C ₄ H ₉ Li, THF, [(CH ₃) ₂ N] ₃ PO, 0°, 30 hr	CH ₃ I, 0°, 1 hr	$C_6H_5(CH_3)NC(C_6H_5) = CHC_3H_7 - i (85)$	113

IADLE II. AMINES (Continued	TABLE	II.	AMINES	(Continued
-----------------------------	-------	-----	--------	------------

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₇ (Contd.)	C ₆ H ₃ CH=CHCH(CN)N(CH ₃)C ₆ H ₁₁	LDA, THF, -78°, 3 hr	CH31 i-C3H-1	$C_6H_5CH(CH_3)CH=C(CN)N(CH_3)C_6H_{11}$ (71) $C_6H_4CH(C_3H_2)CH=C(CN)N(CH_3)C_6H_{12}$ (64)	268 268
	C18	C ₆ H ₅ (CH ₃)NC(C ₆ H ₅)=CHC ₃ H ₇ - <i>i</i>	n-C ₄ H ₉ Li, THF,	CH ₃ l, 0°, 1 hr	$C_6H_5(CH_3)NC(C_6H_5)=CHC_4H_9-t$ (80)	113
	C19	(C ₆ H ₃) ₂ NCH ₂ C ₆ H ₃	n-C ₄ H ₉ Li, THF, 25°, 1 hr	D ₂ O	(C ₆ H ₃) ₂ NCHDC ₆ H ₅ (90)	194
80	C ₂₀	ONCH(CN)C ₆ H ₃ (OCH ₃ -m)(OCH ₂ C ₆ H ₅ -p)	NaH, (CH ₃) ₂ NCHO, room temperature	D ₂ O, CO ₂	O O O O O O O O O O O O O O O O O O O	343
	C ₂₁	$(C_6H_3CH=N)_2CHC_6H_3$	KNH ₂ , NH ₃ (liq), reflux, 1 hr	H ₂ O	$C_6H_5 \xrightarrow{H}_{N} C_6H_5 \xrightarrow{(63)}$	187
			C ₆ H ₅ Li, THF, - 78° to 25°, 270 min	CH ₃ CO ₂ H	cis cis (88)	187,188
		(p-ClC ₆ H ₄ CH=N) ₂ CHC ₆ H ₄ Cl-p	C ₆ H ₅ Li, THF, - 78°, 30 min	СН3СО2Н	A. p-CIC ₆ H ₄ (C_6H_4CI-p)	187,188
		NCH ₂ C ₆ H ₃	n-C₄HgLi, THF, 25°, 72 hr	D ₂ O	NCHDC ₆ H ₅ (-)	194
		C ₆ H ₃ CO ₂ CH ₃ OCH(CN)N(CH ₃)CH ₂ CH(OCH ₃ CH ₃ O	⁾² NaH, (CH ₃) ₂ NCHO, room temperature, 1 hr	CH2CI	$C_{6}H_{3}CO_{2}$ $C_{6}H_{3}CO_{2}$ $CH_{3}O$ $CH_{3}O$ $C(CN)[N(CH_{3})CH_{2}CH(OCH_{3})_{2}]CH_{2}$ $CH_{3}O$ $C(CN)[N(CH_{3})CH_{3}CH(OCH_{3})_{2}]CH_{3}$ $C(CN)[N(CH_{3})CH_{3}CH(OCH_{3})_{3}]CH_{3}$ $C(CN)[N(CH_{3})CH(OCH_{3})CH(OCH_{3})_{3}]CH_{3}$ $C(CN)[N(CH_{3})CH(OCH_{3})CH($	-) 330
				<i>m,m</i> ', <i>p</i> -(CH ₃ O) ₃ C ₆ H ₂ CH ₂ Cl	(-)	,р 330
	C ₂₄	(p-NCC ₆ H ₄ CH=N) ₂ CHC ₆ H ₄ CN-p	C ₆ H3Li, THF 78°. I min	СН3СО2Н	$H_{\bullet} = C_{\bullet} H_{\bullet} C_{\bullet} C_{\bullet} H_{\bullet} C_{\bullet} H_{\bullet} C_{\bullet} H_{\bullet} C_{\bullet} C_$	188
	C	Con, I N. C.H.	NaH FICH A NI PO	DO		660
	20	C ₆ H ₅ C ₆ H ₅	- 10°, 3 days	-10 	C ₆ H ₅ C ₆ H ₅	550
81			NaH. CH3OCH2CH2OCH – 78°, 5 days	D2O 3.	$D \xrightarrow{I} C_6H_5 (100)$ $C_6H_5 \xrightarrow{I} C_6H_5$ $H \xrightarrow{I} C_6H_4CH_{3-p}$	558
	1	(p-CH ₃ C ₆ H ₄ CH=N) ₂ CHC ₆ H ₄ CH ₃ -p	C ₆ H ₅ Li, THF, - 78° to 25°, 1000 min	CH3CO3H	$P-CH_3C_6H_4 \xrightarrow{(42)} C_6H_4CH_3-p$	187.188

TABLE III. BORANES⁴

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C15	[(CH ₃) ₂ CHCH(CH ₃)] ₂ BCH=CHC ₃ H ₇ -n	LTMP, THF, 25°, 15 min	(CH ₃) ₃ SiCl	[(CH ₃) ₂ CHCH(CH ₃)] ₂ BCH=CHCH[Si(CH ₃) ₃]C ₂ H ₅ (not isolated)	17
C16	[(CH ₃) ₂ CHCH(CH ₃)] ₂ BCH=CHC ₄ H ₉ -n	LTMP, THF, 25°, 15 min	(CH ₃) ₃ SiCl	[(CH ₃) ₂ CHCH(CH ₃)] ₂ BCH=CHCH[Si(CH ₃) ₃]C ₃ H ₇ -n (not isolated)	17
	$[(CH_3)_2CHCH(CH_3)]_2BC(C_2H_5)=CHC_2H$	5		[(CH ₃) ₂ CHCH(CH ₃)] ₂ BC(C ₂ H ₅)=CHCH[Si(CH ₃) ₃]CH ₃ (not isolated)	17
C ₁₈	[(CH ₃) ₂ CHCH(CH ₃)] ₂ BCH=CHC ₆ H ₁₃ - <i>n</i>	LTMP, THF, 25°, 15 min	CH ₃ I, 25°, 15 min	[(CH ₃) ₂ CHCH(CH ₃)] ₂ BCH(CH ₃)CH=CHC ₅ H ₁₁ -n + [(CH ₃) ₂ CHCH(CH ₃)] ₂ BC(CH ₃)=CHC ₆ H ₁₃ -n A: 81, B: 19 (not isolated)	17
			(CH ₃) ₃ SiCl	[(CH ₃) ₂ CHCH(CH ₃)] ₂ BCH=CHCH[Si(CH ₃) ₃]C ₅ H ₁₁ -n (not isolated)	17
			H ₂ O	A, $[(CH_3)_2CHCH(CH_3)]_2BCH_2CH=CHC_5H_{11}-n$ + B, $[(CH_3)_2CHCH(CH_3)]_2BCH=CHC_6H_{13}-n$ A: 82, B: 18 (not isolated)	17
			CH ₃ COCH ₃ , 25°, 15 min	[(CH ₃) ₂ CHCH(CH ₃)] ₂ BCH=CHCH[COH(CH ₃) ₂]C ₅ H ₁₁ -n (not isolated)	17

^a The reaction of a diisoamylborane with an acetylenic compound gives the vinylborane, which is metalated in situ.

TABLE IV. BROMIDES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C3	CH ₂ =CHCH ₂ Br	$(C_6H_5)_3$ SiLi (1 eq), ether, room temperature, 4 hr	H ₃ O ⁺	$(C_{6}H_{5})_{3}SiCH_{2}CH=CH_{2} (11)$ $+ (C_{6}H_{5})_{3}SiC=CH_{3} (7.1)$ $+ (C_{6}H_{2})_{3}SiCH=CHCH_{2}Si(C_{1}H_{2})_{2} (1.8)$	413
		LDA (0.5 eq), THF, -78°, 1 hr, then 0°, 1 hr	HCI, N	$CH_2 = CHCHB_rCH_2CH = CH_2$ (44)	615
C ₅	(CH ₃) ₂ C=CHCH ₂ Br	LDA (0.5 eq), THF, -78°, 1 hr, then 0°, 1 hr	HCI, N	A, $(CH_3)_2C=CHCH=CHCH=C(CH_3)_2$ cis and trans + B, $CH_2=C(CH_3)CH=CHCH_2CH=C(CH_3)_2$	615
C ₇	C ₆ H ₅ CHBr ₂	LDA, THF-ether, 7:10, -110°, 15 min	n-C ₄ H ₉ I, [(CH ₃) ₂ N] ₃ PO-THF (3:5)	$C_6H_5CBr=CHC_3H_7-n$ (-)	595
		2019-2 GENERAL -	<i>i</i> -C ₃ H ₇ CHO, [(CH ₃) ₂ N] ₃ PO-THF (3:5) -110° to 15°, 2 hr	$C_6H_5COCHBrC_3H_7-i$ (57)	595

.....

TABLE IV. BROMIDES (Continued)

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₃	CH ₂ =CHCH ₂ Cl	NaNH ₂ , NH ₃ (liq), inverse addition	_	$CH_2 = CHCH = CHCH = CH_2 (30)$	57
			LDA (0.5 eq), THF, -78°, 1 hr. then 0°, 1 hr	HCl, N	$(-)$ $A, CH_2 = CHCH(CI)CH_2CH = CH_2$	615
86			LDA (1 eq), THF, -78°	CH ₂ =CHCH ₂ Br (1 eq), -78°, 1 hr, then room temperature	B, CH ₂ =CHCH ₂ CH ₂ CH=CHCl A: 8, B: 1 (23) A, CH ₂ =CHCHBrCH ₂ CH=CH ₂ + B, CH ₂ =CHCHClCH ₂ CH=CH ₂	615
		CH ₂ =CHCHCl ₂	LTMP, ether, -5° , 1 hr,	(CH ₃) ₂ C=C(CH ₃) ₂	C, CH ₂ =CHCH ₂ CH ₂ CH ₂ CH=CHCl A: 8, B: 8, C: 1 (-) $R_1 R_3$ $R_2 R_4$	
				(CH ₃) ₂ C=CHCH ₃ (CH ₃) ₂ C=CH ₂ CH ₃ CH=CHCH ₃	$Cl \longrightarrow CH = CH_{2}$ A, R ₁ = R ₂ = R ₃ = R ₄ = CH ₃ (28) A, R ₁ = R ₂ = R ₃ = CH ₃ , R ₄ = H (25) A, R ₁ = R ₂ = CH ₃ , R ₃ = R ₄ = H (42) A, R ₁ = R ₃ = CH ₃ , R ₂ = R ₄ = H (39)	135d 135d 135d 135d
				cis CH ₃ CH=CHCH ₃ trans	A, $R_1 = R_4 = CH_3$, $R_2 = R_3 = H$ (30)	135d
				CH ₂ =CHCH=CH ₂	A, $\mathbf{R}_1 = C\mathbf{H} = C\mathbf{H}_2$, $\mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{H}$ (not isolated)	1350
			LDA, THF, -78°, 2 hr	○ ⁰	CH ₂ =CH ₂ CCl ₂ R	
				mixed with starting material	A, R= (56)	616
				\bigcirc°	A, $R = \bigcirc OH$ (63)	616
				o	A. $R = \bigcirc OH$ (68)	616
~				(CH ₂) ₁₀ C=O	A, R = $(CH_2)_{10}$ (66)	616
87				CH ₃ COC ₆ H ₁₃ -n	A, R = CH ₃ C(OH)C ₆ H ₁₃ -n (73)	616
				\bigcirc°	$A, R = \bigcirc OH (50)$	616
				1-C4H9	A, R = (54)	616
		CICH=CCICHCl ₂	$NaNH_2$, -75°, 15 hr	- 00° to 20° them 11*	$CICH = C = CCl_2 (76)$ $Cl_1 = CCICO_2H$	553
			$n - C_4 \Pi_9 L1$ (2 eq), THF-ether-petroleum ether, 4:1:1, -110°	CO_2 , -50° to 20°, then H	CI CI CCICO ₂ H (90)	168

TABLE V. CHLORIDES

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₃ (Contd.)	CICH=CCICHCl ₂	n-C₄H₂Li (2 eq), THF-ether-petroleum ether,	CO ₂ , then		168
	C4	CH ₂ =C(CH ₃)CH ₂ Cl	4:1:1, – 110° NaNH2 (1 eq), NH3 (liq) NaNH2 (0.5 eq), NH3 (liq)	-	CO_2H $CH_2=C(CH_3)CH=CHC(CH_3)=CH_2$ (27) $CH_2=C(CH_3)CH_2CHCIC(CH_3)=CH_2$ (-)	457 457
8					$CH_2 = C(CH_3)CH = CHC(CH_3) = CH_2 (-)$ $CI \bigcirc CO_2C_2H_5$	
8	C ₆	Cl ₂ C=CCICHCICO ₂ C ₂ H ₅	t-C ₄ H ₉ OLi, C ₃ H ₈ , -75°, 9 hr	-	CI + CI + (86)	554
	C ₇	C ₆ H ₅ CCl ₃	<i>n</i> -C ₄ H ₉ Li, THF, -100°,	CO ₂ , then H ₂ O	$C_6H_5COCO_2H$ (75)	160
			1.20 11	CH ₃ I, 3 hr H ₂ O CH ₃ OD	$C_6H_5CCl_2CH_3$ (77) $C_6H_5CHCl_2$ (58) $C_6H_5CDCl_2$ (-)	160 160 160
			– 105°, 45 min	$(CH_3)_2C = C(CH_3)_2,$ -105°, then -65°		160
		o,p-Cl ₂ C ₆ H ₃ CH ₂ Cl	<i>n</i> -C₄H₂Li (0.5 eq), THF, - 100°, 2 hr	3 <u></u> 7	$o_{,p}$ -Cl ₂ C ₆ H ₃ CH ₂ CHClC ₆ H ₃ Cl ₂ - $o_{,p}$ (50) +	111
					$o,p-Cl_2C_6H_3CH=CHC_6H_3Cl_2-o,p$ (-) + $o,p-Cl_2C_6H_3CH_2Cl$ (-)	
		o-O2NC6H4CH2Cl	K ₂ CO ₃ , CH ₃ OH, reflux, 4 hr Reflux, 2 hr	(CH ₃) ₂ NC ₆ H ₄ NO-p p-O ₂ NC ₆ H ₄ CHO	$o-O_2NC_6H_4CH=NC_6H_4N(CH_3)_2-p$ (-) $o-O_2NC_6H_4CHCHC_6H_4NO_2-p$ (-)	344 344
			Reflux, 2 hr			344
		p-O2NC6H4CH2Cl	K ₂ CO ₃ , CH ₃ OH, reflux, 2.5 hr	С₄Н₅СНО	$C_6H_4NO_2-\sigma$ $C_6H_5CHCHC_6H_4NO_2-p$ (-)	344
				o-O2NC6H4CHO	$p - O_2 NC_6 H_4 CHCHC_6 H_4 NO_2 - o (-)$	344
				m-O ₂ NC ₆ H ₄ CHO	$p - O_2 NC_6 H_4 CHCHC_6 H_4 NO_2 - m (-)$	344
89				p-O ₂ NC ₆ H ₄ CHO	$p-O_2NC_6H_4CHCHC_6H_4NO_2-p$ (-)	344
				p-CH ₃ OC ₆ H ₄ CHO	$p-O_2NC_6H_4CHCHC_6H_4OCH_3-p$ (-)	344
				(C ₆ H ₅) ₂ CHCHO	$p-O_2NC_6H_4CHCHCH(C_6H_5)_2$ (-)	344
			Reflux, 2 hr	C ₆ H ₅ COCOC ₆ H ₅ (0.5 eq)	$p-O_2NC_6H_4CHC(C_6H_5)COC_6H_5$ (-)	344
					0 -C ₆ H ₄ NO ₂ -p (-)	344

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₇ (Contd.)	p-O ₂ NC ₆ H ₄ CH ₂ Cl C ₆ H ₅ CHCl ₂	K_2CO_3 , CH_3OH , reflux, 2.5 hr K_2CO_3 , C_3H_7OH , reflux, 6 hr $n-C_4H_9Li$ (1 eq), THF-petroleum ether-ether,	(CH ₃) ₂ NC ₆ H ₄ NO- <i>p</i> [<i>p</i> -(CH ₃) ₂ NC ₆ H ₄] ₂ CS CO ₂ , H ₂ O	$p-O_2NC_6H_4CH=NC_6H_4N(CH_3)_2-p$ (-) $p-O_2NC_6H_4CH=C[C_6H_4N(CH_3)_2-p]_2$ (-) $C_6H_5COCO_2H$ (61)	344 344 112
			96:24:24, -100°, 30 min n-C₄H₀Li, THF, -90°, 15 min		C ₆ H ₅ COCO ₂ H (42)	160
				$(CH_3)_2C=C(CH_3)_2,$ -100°, 1 hr, then		160
90		o-ClC ₆ H ₄ CH ₂ Cl	$n-C_4H_9Li$ (0.5 eq), THF, - 100° 1.5 br	$(CH_3)_2C=C(CH_3)_2$	$(C_6H_5)_2C = C(C_6H_5)_2$ (33) o-CIC ₆ H ₄ CH ₂ CHCIC ₆ H ₂ Cl- o (80)	160 111
		p-ClC ₆ H ₄ CH ₂ Cl	$n-C_4H_9Li (0.5 eq), THF,$		$p-ClC_6H_4CH_2CHClC_6H_4Cl-p$ (95)	111
		C ₆ H ₅ CH ₂ Cl	$n-C_4H_9Li (0.5 eq), THF,$	-	$C_6H_5CH_2CHClC_6H_5$ (80)	60
			$n-C_4H_9Li (0.5 eq), THF,$		$C_6H_5CH_2Cl$ (8)	111
			-100° , 15 min, then -100° to -80° , 2.5 hr $(C_2H_5)_2$ NLi (0.5 eq), ether $-\Gamma(CH_1)$ NJ PO	-	$C_6H_5CH_2CHCC_6H_5$ (86) $C_6H_5CH_2CI$ (60)	550
			$1:1, -70^{\circ}, 1 \text{ hr},$		$C_6H_5CHClCH_2C_6H_5$ (10)	
			inverse addition		$C_6H_5CH = CHC_6H_5$ (25)	
			LDA (0.5 eq), THF, -78°,	HCl, N	$C_6H_5CHClCH_2C_6H_5$ (90)	615
			LiNH ₂ or NaNH ₂ (0.33 eq), ether, NH ₃ (liq), -70° , 15 min, inverse addition,	-	C ₆ H ₅ CH ₂ CHClC ₆ H ₅ (74–79)	426
			$NaNH_2$ (0.5 eq), NH_3 (liq)	-	C ₆ H ₅ CHCHClC ₆ H ₅ (20–25) +	426
			NaNH2, NH3 (liq), 45 min	CH ₂ =C(CH ₃)CH ₂ Cl	$C_6H_5CH = CHC_6H_5 (40-45)$ $C_6H_5CH = CHC(CH_3) = CH_2 (23)$	459
					$C_6H_5CH = CHC_6H_5$ (13)	
					$CH_2 = C(CH_3)CH = CHC(CH_3) = CH_2 (35)$	
				CH ₂ =CHCH ₂ Cl	$C_6H_5CH = CHCH = CH_2$ (15)	459
					$C_6H_5CH=CHC_6H_5$ (-)	
			KOH, CH ₃ OH, reflux, 1 hr	p-O ₂ NC ₆ H ₄ CHO	$CH_2 = CHCH = CHCH = CH_2 (-)$ $C_6H_5CHCHC_6H_4NO_2-p (-)$	444
9	C ₈	o-CH ₃ C ₆ H ₄ CH ₂ Cl	$n-C_4H_9Li$ (0.5 eq), THF,	-	o-CH ₃ C ₆ H ₄ CH ₂ CHClC ₆ H ₄ CH ₃ -o (-)	111
-		p-CH ₃ C ₆ H ₄ CH ₂ Cl	-100° , 3 hr $n-C_4H_9Li$ (0.5 eq), THF,	-	p-CH ₃ C ₆ H ₄ CH ₂ CHClC ₆ H ₄ CH ₃ -p (91)	111
		C ₆ H ₅ CHClCH ₃	-100° , 3 hr NaNH ₂ (1.3 eq), NH ₃ (liq), 1.5 hr		$C_6H_5CH(CH_3)C(CH_3)ClC_6H_5$ (-)	458
	Co	C ₆ H ₅ CH=CHCH ₂ Cl C ₆ H ₅ CHClC ₂ H ₅	NaNH ₂ , NH ₃ (liq), 15 min NaNH ₂ (3 eq), NH ₃ (liq), $C_6H_6CH_3$	-	$C_{6}H_{5}CH=CHCH=CHCH=CHC_{6}H_{5} (10)$ $C_{6}H_{5}(C_{2}H_{5})C=C(C_{2}H_{5})(C_{6}H_{5}) (-)$	459 458
	C ₁₃		KOH, CH ₃ OH, reflux, 1 hr	C ₆ H ₃ CHO		344
			K ₂ CO ₃ , CH ₃ OH, reflux, 12 hr	p-O2NC6H4CHO	C_6H_5 (-) $C_6H_4NO_2p$	344

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₃ (Contd.)		Reflux, 4.5 hr			344
92			K ₂ CO ₃ , C ₃ H ₇ OH, reflux, 6 hr	[<i>p</i> -(CH ₃) ₂ NC ₆ H ₄] ₂ CS	$\bigcup_{C[C_6H_4N(CH_3)_2 - p]_2} (-)$	344
			Reflux, 2 hr	(CH ₃) ₂ NC ₆ H ₄ NO-p		344
		(C ₆ H ₅) ₂ CCl ₂	n-C4H9Li, THF, -100°,	CO ₂ , then H ⁺	$C_{6}H_{4}N(CH_{3})_{2}-p$ (C ₆ H ₅) ₂ C(OH)CO ₂ H (40)	160
		(C ₆ H ₅) ₂ CHCl	1.25 hr NaNH ₂ (0.5 eq), ether, NH $(1.5) = 70^{\circ}$ 15 min		$(C_6H_5)_2CHC(CI)(C_6H_5)_2$ (60)	426
			inverse addition KNH_2 (0.5 eq), NH_2 (liq),	СНЛ	$(C_6H_5)_2C=CH_2$ (40)	426
			inverse addition $(C_2H_5)_2NLi$,	addition ILi, CH_3I $(C_6H_5)_2C=C(C_6H_5)_2$ (80)	$(C_6H_5)_2C=C(C_6H_5)_2$ (80)	550
			ether-[(CH ₃) ₂ N] ₃ PO, 1:1, -75°		$(C_6H_5)_2C = CH_2$ (10)	
	C14	C ₆ H ₅ CH ₂ CHClC ₆ H ₅	<i>n</i> -C₄H₂Li (1 eq), THF, -58° to -40°, 1.5 hr	-	$C_{6}H_{5}CH_{2}CH(C_{4}H_{9}-n)C_{6}H_{5}$ (10) + $C_{6}H_{5}CH=CHC_{6}H_{5}$ (30)	ш
	C ₂₁	(C ₆ H ₅) ₃ PbCH ₂ CH=CCl ₂	<i>n</i> -C₄H ₉ Li, THF, −90°, 20 min	C ₂ H ₅ CHO, -90°, 5 min	trans + $C_6H_5CH_2CH(C_6H_5)CH(C_6H_5)CH_2C_6H_5$ (13) $C_2H_5CH(OH)CCl_2CH=CH_2$ (69) +	155
				C ₆ H ₅ CHO, -90°, 5 min CH ₃ COCH ₃ , -90°, 5 min	$\begin{array}{ll}C_2H_5CH(OH)CH_2CH=CCl_2 & (28)\\C_6H_5CH(OH)CH_2CH=CCl_2 & (97)\\(CH_3)_2C(OH)CCl_2CH=CH_2 & (90)\end{array}$	155 155
				C ^o .	CCl ₂ CH=CH ₂ (81)	155
93				-90° , 5 min CF ₃ COCF ₃ , -90° , 5 min CH ₃ COC ₄ H ₉ - <i>t</i> , -90° , 5 min	$(CF_3)_2C(OH)CH_2CH=CCl_2 (90)$ $\ell - C_4H_9C(OH)(CH_3)C(Cl)=CHCH_2Cl (28)$	155 155
				$C_6H_5COCH_3$, -90°, 5 min,	$^{t-C_4H_9C(OH)(CH_3)C(Cl)}$ =CHCH ₂ OH (64) C ₆ H ₅ C[OSi(CH ₃) ₃](CH ₃)CCl ₂ CH=CH ₂ (29)	155
				then $(CH_3)_3SICI$ C ₆ H ₅ COC ₆ H ₅ , -90° , 5 min	$\stackrel{+}{C_6H_5C[OSi(CH_3)_3](CH_3)CH_2CH=CCl_2 (18)} (C_6H_5)_2C(OH)CH_2CH=CCl_2 (91)$	155
			n-C₄H9Li, THF, −95°, 1 hr	(CH ₃) ₃ SiCl (CH ₃) ₃ SnBr HgCl ₂ (CH ₃) ₃ GeCl	$(CH_3)_3SiCCl_2CH=CH_2$ (99) $(CH_3)_3SnCH_2CH=CCl_2$ (97) $ClHgCH_2CH=CCl_2$ (83) $(CH_3)_3GeCCl_2CH=CH_2$	159 159 159 159
2				(CH ₃) ₃ GeCl (0.5 eq)	$(CH_3)_3GeCH_2CH=CCl_2$ A: 5.66, B: 1 (100) A, (CH_3)_3GeCCl_2CH=CH_2 + B (CH_3)_5GeCCl_2CH=CH_2	159
					A: 0.65, B: 1 ()	

TABLE V. CHLORIDES (Continued)

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	С,	CH ₂ =CHCH(CN)OSi(CH ₃) ₃	LDA, THF, -78°, 2 hr	CH ₃ I <i>i</i> -C ₃ H ₃ I	$CH_2 = CHC(CH_3)(CN)OSi(CH_3)_3 (53)$ $CH_2 = CHC(C_3H_7 + i)(CN)OSi(CH_3)_3 (58)$	427 427
	C ₈	CH ₂ =CHCH(CN)OCH(CH ₃)OC ₂ H ₅	LDA, THF, [(CH ₃) ₂ N] ₃ PO, -78°, 5 min	$C_6H_5CH_2CH_2Br$ $n-C_6H_{13}Br$, -78°, 1-2 hr, then 0°, 1 hr	$CH_2 = CHC(C_6H_{13}-n)(CN)OCH(CH_3)OC_2H_5 (75)$	33
		CH2=C(CH3)CH(CN)OSi(CH3)3	LDA, THF, -78°, 2 hr	СН³І	$CH_2 = C(CH_3)CR(CN)OSi(CH_3)_3$ A, R = CH_1 (80)	427
9		CH ₃ CH=CHCH(CN)OSi(CH ₃) ₃	- 35°, 8 hr LDA, THF, - 78° 2 hr	I-C₃H₃I C₀H₅CH₂CH₂Br CH₃I	A, $\mathbf{R} = C_3 H_7 - i$ (67) A, $\mathbf{R} = CH_2 CH_2 C_6 H_5$ (58) CH ₃ CH=CHCR(CN)OSi(CH ₃) ₃ A, $\mathbf{R} = CH_2$ (87)	427 427 427
4			1 DA THE -35° 5 br	$p-CH_3C_6H_4SO_3CH_3$ C_2H_3I $i-C_3H_7Br$ $n-C_4H_8Br$ $p-CH_3C_6H_4SO_3C_4H_9-n$ $CH_2=CHCH_2Br$ $C_6H_2CH_3Br$ $Br(CH_2)_2Br (0.5 eq)$ $Br(CH_2)_3Br (0.5 eq)$	$A_{R} = CH_{3} (67)$ $A_{R} = C_{2}H_{3} (82)$ $A_{R} = C_{3}H_{7}-i (78)$ $A_{R} = C_{3}H_{7}-i (73)$ $A_{R} = C_{4}H_{9}-n (62)$ $A_{R} = C_{4}C_{9}-n (62)$ $A_{R} = CH_{2}C_{4}C_{3} (75)$ $A_{R} = CH_{2}C_{4}C_{3} (76)$ $A_{R} = CH_{2}C_{4}B_{3} (76)$ $A_{R} = CH_{2}C_{4}B_{3} (79)$ $A_{R} = CH_{2}C_{4}C_{4} (79)$	427 427 427 427 427 427 427 427 427 427
			-35°, 12 hr	0	A. $R = CH_2CH_2C_{6}H_5$ (46) A. $R = CH_2CH_2C_{6}H_5$ (76)	427
			LDA, THF, -35°, 12 hr	BrCH ₂	$A, R = CH_2 - (53)$	427
	C,	CH(CN)OSi(CH ₃) ₃	LDA, THF, -78°, 5 min	CH31	CR(CN)OSi(CH ₃) ₃	228a,312
		CH ₃ CH=CHCH(CN)OCH(CH ₃)OC ₂ H ₃	LDA, THF, [(CH ₃) ₂ N] ₃ PO, -78°, 5 min	i-C ₃ H ₇ I C ₆ H ₅ COCH=CHC ₆ H ₅ , -78°, 5-10 min, then 0°	A, $R = C_{13}$ (92) A, $R = C_{3}H_{7^{-1}}$ (80) $C_{6}H_{5}COCH_{2}CH(C_{6}H_{5})C(CN)(CH=CHCH_{3})OCH(CH_{3})OC_{2}H_{5}$ (70-85)	228a,312 248
				لُّ ب	C(CN)(CH=CHCH ₃)OCH(CH ₃)OC ₂ H ₃ (70-85)	248
				\bigcirc		248
		(CH ₃) ₂ C=CHCH(CN)OSi(CH ₃) ₃	LDA, THF, -78°, 2 hr	CH31	$C(CN)(CH=CHCH_3)OCH(CH_3)OC_2H_3$ (70-85) $(CH_3)_2C=CHCR(CN)OSi(CH_3)_3$ $A, B = CH_3$ (88)	427
				i-C ₃ H ₇ I	$A, R = C_3 H_7 - i (84)$	427
	C10	CH(CN)OCH(CH ₃)OC ₂ H ₅	LDA, THF, [(CH ₃) ₂ N] ₃ PO, -78°, 5 min	<i>n</i> -C ₄ H ₉ Br, -78°, 1-2 hr, then 0°, 1 hr	$\int_{O} C(C_4H_9-n)(CN)OCH(CH_3)OC_2H_5 (90)$	33
		CH(CN)OSi(CH ₃) ₃	LDA, THF, -78°	CH_3I , -78° to 25° , then hydrolysis	COCH, (89)	228a
95		CH(CN)OSi(CH ₃) ₃	LDA, THF, -78°, 5 min	CH31	$ \begin{array}{c} N \\ \hline CR(CN)OSi(CH_3)_3 \\ A, R = CH_3 (80) \\ A, R = CH_{-1} (78) \\ \hline \end{array} $	228a,312 228a 312
		CH(CN)OSi(CH ₃) ₃		a an	CR(CN)OSi(CH ₃) ₃	
		N	LDA, THF, -78°, 10 min	<i>i</i> -C ₃ H ₇ I, 2 hr	$A = C H_{rr} (78)$	443
		CH(CN)OSi(CH ₃) ₃		C ₆ H ₅ CH ₂ Br, 2 hr CH ₃ I	A, R = $CH_2C_6H_3$ (84) A, R = CH_3 (84) CR(CN)OSi(CH ₃) ₃	443 228a
		\bigcirc			\bigcirc	
		N	LDA, THF, -78°, 10 min	CH ₃ I, 2 hr	$A, R = CH_3 (84)$	228a,443
				I-C ₃ H ₇ I, 2 hr	$A, R = C_3H_7 - i (80)$	228a,443
		(CH ₃) ₂ C=CHCH(CN)OCH(CH ₃)OC ₂ H ₃	LDA, THF, [(CH ₃) ₂ N] ₃ PO, -78°	\bigcirc	↓ ↓ OCH(CH ₃)OC ₂ H ₃ (−)	493

TABLE VI. CYANOHYDRIN ETHERS

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₀	CH ₃ CH=CHCH=CHCH(CN)OSi(CH ₃) ₃	LDA, THF, -35°, 3 hr	CH3I	CH ₃ CH=CHCH=CHCR(CN)OSi(CH ₃) ₃	427
(Conta.)	C H CHICNOCH CH=CH	n-C.H.ONs n-C.H.OH	<i>i-</i> C ₃ H ₇ 1	A, $R = C_{13}^{-1}$ (94) CH_CH=CHCOCC_H_ ()	427
en	C ₆ H ₃ CH(CN)OSi(CH ₃) ₃	120°, 3 min LDA, THF, -78°, 5 min	CH ₃ I	C ₆ H ₃ CR(CN)OSi(CH ₃) ₃	228a,312
			CH ₃ OSO ₂ C ₆ H ₄ CH ₃ - p , 2 hr (CH ₃ O) ₂ SO ₂ , 1 hr C ₂ H ₃ I C ₃ H ₅ OSO ₃ C ₆ H ₄ CH ₃ - p , 2 hr (C ₂ H ₃ O) ₂ SO ₂ , 1 hr i-C ₃ H ₇ I	A, R = CH ₃ (-) A, R = CH ₃ (80) A, R = CH ₃ (92) A, R = C ₂ H ₅ (-) A, R = C ₂ H ₅ (85) A, R = C ₂ H ₅ (92) A, R = C ₃ H ₇ - <i>i</i> (-)	228a,443 228a,443 228a,443 228a,443 228a,443 201,228a 212
			p-CH ₃ C ₆ H ₄ SO ₃ C ₃ H ₇ -i t-C ₄ H ₉ I	A, R = C_3H_{7} - <i>i</i> (81) A, R = C_4H_{9} - <i>i</i> (-)	228a 201,228a 312
		LDA, THF, - 78°,	n-C4H9Cl, 1 hr n-C4H9Cl, 24 hr n-C4H9Br, 1 hr	A, $R = C_4 H_9 \cdot n$ (22) A, $R = C_4 H_9 \cdot n$ (87) A, $R = C_4 H_9 \cdot n$ (72)	228a,443 228a,443 228a,443
		10 mm	n-C ₄ H ₉ I, 1 hr n-C ₄ H ₉ OSO ₂ C ₆ H ₄ CH ₃ -p, 2 hr	A, R = C_4H_9-n (74) A, R = C_4H_9-n (91)	228a,443 228a,443
		LDA, THF, - 78°. 10 min	-Br, 17 hr	A, R = (48)	228a,443
			$CH_2 = CHCH_2Br, 1 hr$ $C_6H_5CH_2Br$ $C_6H_5CH_2CH_2Br, 1.5 hr$ O_{\sim}	A, R = CH ₂ CH=CH ₂ (96) A, R = CH ₂ C ₆ H ₃ (96) A, R = CH ₂ C ₆ H ₃ (96) A, R = CH ₂ CH ₂ C ₆ H ₂ (62) O_{\sim}	228a,44 228a,31 228a,44
			$BrCH_2 - \sqrt{7}$, 7 hr	$A, R = CH_2 - (60)$	228a,44
			Br(CH ₂) ₃ Cl BrCH ₂ CH ₂ Br (0.5 eq), 4 hr Br(CH ₂) ₃ Br (0.5 eq), 3 hr	A, R = $(CH_2)_3CI$ (85) A, R = CH_3CH_3Br (30) A, R = $(CH_2)_3Br$ (80)	228a,443 228a,443 228a,443
		LDA, THF, –78°	CH₂Br	$A, R = \bigcirc -CH_2 (76)$	228a
			CH²1	$A, R = \bigcirc -CH_2 (80)$	228a
		LDA, CH3OCH2CH2OCH3,	ι-C₄H₀I BrCH₂CH₂(OC₂H₅)₂ CH₃CHO	A, R = $(-C_2H_9 (75))$ A, R = $CH_2CH_2(OC_2H_3)_2$ (20) C_6H_5COR A, R = $CH(CH_3)OSi(CH_3)_3$ (98)	228a 228a 204,617
		- 78°	r-C4H9	$A, R = t \cdot C_4 H_9 $ (84)	228a
			С,H,CHO i-C,H,CHO i-C,H,CHO i-C,H,CHO r-C,H,CHO CH,COCH,	A, R = CH(C ₂ H ₄)OSi(CH ₃) ₃ (91) A, R = CH(C ₃ H ₇ - <i>i</i>)OSi(CH ₃) ₃ (100) A, R = CH(C ₄ H ₇ - <i>i</i>)OSi(CH ₃) ₃ (96) A, R = CH(C ₄ H ₉ - <i>i</i>)OSi(CH ₃) ₃ (80) A, R = C(CH ₃) ₂ OSi(CH ₃) ₃ (98)	204,617 204,617 204,617 617 204,617
			\bigcirc°	$A, R = OSi(CH_3)_3 (98)$	204,617
			∩_°	$A, R = OSi(CH_3)_3 $ (100)	204,617
			$C_{6}H_{3}COCH_{3}$ $C_{6}H_{3}COC_{6}H_{5}$ $C_{2}H_{3}CHO, -78^{\circ} \text{ to } -50^{\circ}, 3 \text{ hr}$	A, R = C[OSi(CH ₃) ₂](CH ₃)C ₆ H ₆ (100) A, R = C[OSi(CH ₃) ₃](C ₆ H ₃) ₂ (98) A, C ₆ H ₅ COC[OSi(CH ₃) ₃]R ₁ R ₂ +	204,617 204,617
	,		i-C₃H-CHO	B, $C_6H_5C(CN)[OSi(CH_3)_3]C(OH)R_1R_2$ A: 75, B: 25, $R_1 = H$, $R_2 = C_2H_5$ (-) A: 82, B: 18, $R_1 = H$, $R_2 = i \cdot C_3H_7$ (-)	617 617
	CH(CN)OSi(CH ₃) ₃	LDA, THF, -78°, 5 min	СН3І	CR(CN)OSi(CH ₃) ₃	1.00 States 1.00 State
			C ₆ H ₅ CH ₂ Br	A, $R = CH_3$ (63) A, $R = CH_2C_6H_5$ (59)	312,617 312,617
			CH ₂ Cl	$R = CH_2 \qquad (-)$	312

TABLE VI. CYANOHYDRIN ETHERS (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C12	C ₆ H ₅ CH(CN)OCH(CH ₃)OC ₂ H ₅	LDA, THF, [(CH ₃) ₂ N] ₃ PO, -78°, 5 min	<i>i</i> -C ₃ H ₇ Br, -78°, 1-2 hr, then 0°, 1 hr	$C_6H_5CR(CN)OCH(CH_3)OC_2H_5$ A, R = C_3H_7-i (94)	33
		C. C. C.	$n-C_4H_9Br$, -78° , $1-2$ hr, then 0° ,	A, $R = C_4 H_9 \cdot n$ (94)	33
			1 hr C ₆ H ₃ CH ₂ Br, -78°, 1-2 hr, then 0°, 1 hr	$A, R = CH_2C_6H_5$ (71)	33
C13	C ₆ H ₅ CH=CHCH(CN)OSi(CH ₃) ₃	LDA, THF, -78°, 5 min	CH31	$C_6H_3CH = CHCR(CN)OSi(CH_3)_3$	312
			C.H.CH.Br	$\mathbf{A} \mathbf{R} = \mathbf{C} \mathbf{H}_{\mathbf{C}} \mathbf{H}_{\mathbf{C}} (-)$	312
	p-(CH ₃) ₂ NC ₆ H ₄ CH(CN)OSi(CH ₃) ₃	LDA, THF, - 78°. 10 min	CH ₃ I, 2 hr	$p_{-}(CH_{3})_{2}NC_{6}H_{4}C(CH_{3})(CN)OSi(CH_{3})_{3}$ (93)	228a,443
			i-C ₃ H ₂ I	p-(CH ₁),NC ₄ H ₄ C(C ₁ H ₂ -i)(CN)OSi(CH ₂), (90)	228a
	C ₆ H ₅ CH(CN)OTHP	NaH, CH ₃ SOCH ₃ ,	n-C7H13Br	C ₆ H ₅ CR(CN)OTHP	
		room temperature, 1.5 hr		A, $R = C_7 H_{15} \cdot n$ (-)	235
			p-O ₂ NC ₆ H ₄ F o.p-(O ₂ N) ₂ C ₆ H ₃ F	A, R = $C_6H_4NO_2 - p$ (-) A, R = $C_6H_3(NO_2)_2 - o.p$ (-)	235 235
C15	C ₆ H ₅ CH(CN)OCH ₂ C ₆ H ₅ CH(CN)OSi(CH ₃) ₃	n-C4H9ONa, n-C4H9OH, 120°, 10 min		C ₆ H ₅ COCH ₂ C ₆ H ₅ (30)	362
	r N	LDA, THF, - 30°	CH ₃ I, then HCl, H ₂ O	(75)	120
	CH(CN)OSi(CH ₃) ₃			COCH,	
115	cn(cn/osi(cn3))		-1.31-0.787-11.01	c(chi)(ch)os(chi))	000000000000000000000000000000000000000
C ₁₆	CH(CN)OSi(CH ₃) ₃ CH(CN)OSi(CH ₃) ₃	LDA (2 eq), THF, 78°, 5 min	CH3I (2 eq)	C(CH ₃)(CN)OSi(CH ₃) ₃ (80)	228a,312
		LDA, THF, - 78°	CH ₃ I (2 eq), -78° to 25°,		
			then hydrolysis		
	CH(CN)OSI(CH ₃) ₃				220
			CH CH Pa (2 an)	$A, \mathbf{K} = \mathbf{C}\mathbf{H}_3 (44)$	228a
			C ₆ H ₅ CH ₂ Br (2 eq)	$A, K = C_6 H_5 C H_2 (08)$	2204

TABLE VI. CYANOHYDRIN ETHERS (Continued)

TABLE VII. DITHIOCARBAMATES

No. of C		Base and		N	P .6
Atoms	Reactant	Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Keis.
C,	CH ₂ =CHCH ₂ SC(S)N(CH ₃) ₂	LDA, THF,	CH31	$CH_2 = CHCHRSC(S)N(CH_3)_2$ A. R = CH_1 (>96)	48, 313 515
			C ₂ H ₅ I n-C ₃ H ₇ I	A. $R = C_2 H_3$ (93) A. $R = C_3 H_7 - n$ (>96)	48, 138 48
			i-C ₃ H ₇ I n-C ₄ H ₉ I	A, $R = C_3 H_7 \cdot i$ (>90) A, $R = C_4 H_9 \cdot n$ (96)	48 48, 138
			n-C ₅ H ₁₁ I n-C ₆ H ₁₃ I	A, $R = C_5 H_{11} \cdot n$ (>93) A, $R = C_6 H_{13} \cdot n$ (94)	313 138
			C ₆ H ₅ CH ₂ Br CH ₃ SSCH ₃	A, $R = CH_2C_6H_5$ (>91) A, $R = SCH_3$ (>88)	48. 515 313
C,	$CH_2 = C(CH_3)CH_2SC(S)N(CH_3)_2$	LDA, THF, -55°, -60°	H ₂ O	$CH_2 = C(CH_3)CHRSC(S)N(CH_3)_2$ A, R = H (99)	218
			CH ₃ 1 C ₂ H ₄ 1	A, R = CH ₃ (98) A, R = C ₃ H ₄ (>90)	48, 218 48
			CH ₃ OCH ₂ Cl n-C ₂ H ₂ I	A, $R = CH_2OCH_3$ (>84) A, $R = C_3H_{3-7}$ (>88)	48 48
			i-C ₃ H ₇ I n-C ₄ H ₂ I	A, R = C_3H_{7} -i (>82) A, R = C_4H_{9} -n (>92)	48 48
			C ₆ H ₅ CH ₂ Br p-CH ₃ C ₆ H ₄ CH(CH ₃)CH ₂ CH ₂ Br	A, $R = CH_2C_6H_5$ (>85) A, $R = CH_2CH_2CH(CH_3)C_6H_4CH_{3}-p$ (-)	515 515
		LDA,	CH ₃ SSCH ₃ H ₂ O	A, $R = SCH_3$ (>90) A, $CH_2 = C(CH_3)CH(SH)C(S)N(CH_3)_2$	313, 515 218
		[(CH ₃) ₂ N] ₃ PO-THI 1:1, -60°, 10 min		+ B. CH ₂ =C(CH ₃)CH ₂ SC(S)N(CH ₃) ₂ A: 98, B: 2 (97.5)	
		LDA, [(CH ₃) ₂ N] ₃ PO-THF 1:360° 30 min	сн,	$CH_2 = C(CH_3)CH(SCH_3)C(S)N(CH_3)_2$ (96)	218
	CH ₃ CH=CHCH ₂ SC(S)N(CH ₃) ₂ trans	LDA, THF, -55°	СН'І	CH ₃ CH=CHCHRSC(S)N(CH ₃) ₂ trans	48
			C2H3I CH3=CHCH3CI	A, $R = CH_3$ (>88) A, $R = C_2H_5$ (>86) A, $R = CH_3CH=CH_3$ (>95)	48 48
	CH ₃ CH=CHCH ₂ SC(S)N(CH ₃) ₂	LDA, THF, - 78°	C ₆ H ₅ CH ₂ Br CH ₃ SSCH ₃	A, $R = CH_2C_6H_5$ (>85) CH_3CH=CHCH(SCH_3)SC(S)N(CH_3)_2 (>95)	515 313

TABLE VII. DITHIOCARBAMATES (Continued)

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%) R	efs.
	C ₇	CH ₂ =C(OCH ₃)CH ₂ SC(S)N(CH ₃) ₂	LDA, THF, -78°	n-C3H11I, -65°	A, CH ₂ =CH(OCH ₃)CHRSC(S)N(CH ₃) ₂	298
100	(Conta.)			(CH ₃) ₂ C=CHCH ₂ Br, -65° C ₆ H ₅ CH ₂ Br, -65°	B, RCH ₂ C(OCH ₃)=CHSC(S)N(CH ₃) ₂ A: 98, B: 2, $R = C_3H_{11}$ - <i>n</i> (97) A: 98, B: 2, $R = CH_2CH=C(CH_3)_2$ (99) A: 98, B: 2, $R = CH_2C_6H_5$ (98)	298 298
				CH2Br, -65°	A: 98, B: 2, R = CH, (98)	298
				и-С ₆ H ₁₃ СНСН₂,−65°	A: 15, B: 85, R = $CH_2CH(OH)C_6H_{13}$ -n (63)	298
				C ₆ H ₃ CHO, -65° CH ₃ COCH ₃ , -65°	A: 17, B: 83, R = CH(OH)C ₆ H ₅ (98) A: 20, B: 80, R = C(OH)(CH ₃) ₂ (96)	298 298
				COCH3, −65°	A: 20, B: 80, R = C(OH)(CH ₃)-(96)	298
	C,	$CH_3SCH=CHCH_2SC(S)N(CH_3)_2$ $C_2H_3CH=CHCH_2SC(S)N(CH_3)_2$	LDA, THF, –78° LICA, THF, –55°	C ₆ H ₃ COC ₆ H ₃ , -65° <i>n</i> -C ₅ H ₁₁ I I(CH ₂) ₄ OTHP	A: 20, B: 80, R = C(OH)(C ₆ H ₂) ₂ (97) CH ₃ SCH=CHCH(C ₃ H ₁₁ - π)SC(S)N(CH ₃) ₂ (>69) C ₂ H ₃ CH=CHCH[SC(S)N(CH ₃) ₂](CH ₂) ₄ OTHP	298 313 138
		trans CH ₃ SCH=C(CH ₃)CH ₂ SC(S)N(CH ₃) ₂	LDA, THF, -78°, then -55°	n-C3H11I C6H3CH2Br	trans (90-93) $CH_3SCH=C(CH_3)CHRSC(S)N(CH_3)_2$ $A, R = C_3H_{11}-n$ (67) $A, R = CH_2C_6H_5$ (-)	313 313
	C10	C ₆ H ₃ CH ₃ SC(S)N(CH ₃) ₂	LDA, THF, -60°, 5 min LDA, 1(CH.). NJ. POTE	Н,0 СН,1 Н20	$C_6H_3CHRSC(S)N(CH_3)_2$ A, R = H (99) A, R = CH_3 (99) $C_6H_5CH(SH)C(S)N(CH_3)_2$ (96)	218 218 218
			1:1, -60°, 60 min	CH 1		218
		n-C4H9CH=CHCH2SC(S)N(CH3)2 trans	LICA, THF, -55°	I(CH ₂) ₃ OTHP	<i>n</i> -C ₄ H ₂ CH=CHCH[SC(S)N(CH ₃) ₂](CH ₂) ₅ OTHP <i>trans</i> (90-93)	138
	C ₁₁ C ₁₂	n-C ₅ H ₁₁ CH=CHCH ₂ SC(S)N(CH ₃) ₂ C ₆ H ₅ CH ₂ SC(S)N(C ₂ H ₅) ₂	LDA, THF,78° LDA, THF,78°	CH ₃ SSCH ₃ C ₂ H ₅ CHO, - 78°, 1 hr, then H ₃ O ⁺	$n-C_3H_{11}CH=CHCH(SCH_3)SC(S)N(CH_3)_2$ (78) (C_2H_5) ₂ NC(S)SCH(C_6H_3)CH(OH) C_2H_5 (95)	313 447
				() ^o	CHC ₆ H ₃ (78)	447
		$n-C_3H_{11}CH=C(CH_3)CH_2SC(S)N(CH_3)_2$ $n-C_6H_{13}CH=CHCH_2SC(S)N(CH_3)_2$	LDA, THF, –78° LICA, THF, –55°	[(CH ₃) ₂ N] ₃ PO, 25-60° CH ₃ SSCH ₃ I(CH ₂) ₅ OTHP	$n-C_5H_{11}CH = C(CH_3)CH(SCH_3)SC(S)N(CH_3)_2$ (>69) $n-C_6H_{13}CH = CHCH[SC(S)N(CH_3)_2](CH_2)_5OTHP$ (90–93)	313 138
-		rans $n-C_4H_9CH=CHCH_2SC(S)N(C_2H_5)_2$	LDA, THF, -55°,	[(C2H5)2NCSS]2, -60°, 1 hr	$(C_2H_3)_2NC(S)SCH(C_4H_9-n)CH=CHSC(S)N(C_2H_3)_2$ (-)	139
01	C13	C ₆ H ₃ CH ₂ CH=CHCH ₂ SC(S)N(CH ₃) ₂	LDA, THF, -78°	CH ₃ SSCH ₃	$n-C_6H_3CH_2CH=CHCH(SCH_3)SC(S)N(CH_3)_2$ (>60)	313
		$n-C_4H_9CH=C(CH_3)CH_2SC(S)N(C_2H_5)_2$	LDA, THF, -55°, 10 min	[(C ₂ H ₅) ₂ NCSS] ₂ , -60°, 1 hr	$(C_2H_3)_2NC(S)SCH(C_4H_9-n)C(CH_3)=CHSC(S)N(C_2H_3)_2 (-)$	139
	C ₁ ,	C ₆ H ₃ CH ₂ CH=CHCH ₂ SC(S)N(C ₂ H ₅) ₂	LDA, THF, -55°, 10 min	$[(C_2H_3)_2NCSS]_2, -60^\circ, 1 hr$	$(C_2H_3)_2NC(S)SCH(CH_2C_6H_3)CH=CHSC(S)N(C_2H_3)_2$ (-)	139
	C16	$n-C_8H_1$, CH=CHCH ₂ SC(S)N(C ₂ H ₅) ₂	LDA, THF, -55°, 10 min	$[(C_2H_5)_2NCSS]_2, -60^\circ, 1 hr$	$(C_2H_5)_2NC(S)SCH(C_8H_{17}-n)CH=CHSC(S)N(C_2H_5)_2$ (-)	139
	C18	p-CH ₃ C ₆ H ₄ CH(CH ₃)CH ₂ CH ₂ CH=C(CH ₃)CH ₂ SC(S)N(CH ₃) ₂	LDA, THF, -55°	CH ₃ SSCH ₃	p-CH ₃ C ₆ H ₄ CH(CH ₃)CH ₂ CH ₂ CH=C(CH ₃)CH(SCH ₃)SC(S)N(CH ₃) ₂ (-)	515

TABLE VIII. DITHIOESTERS

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₆	CH ₂ =C(CH ₃)CH ₂ SC(S)CH ₃	sec-C ₄ H ₉ Li (2 eq), THF, -78°, 30 min	$n-C_8H_{17}Br (1 eq),$ then CH ₃ I (1 eq), -25°	$CH_2 = C(CH_3)CH(C_8H_{17}-n)SC(SCH_3) = CH_2$ (unstable)	45
			$C_6H_5CH_2Br$ (1 eq), then CH_3I (1 eq), -25°	$CH_2 = C(CH_3)CH(CH_2C_6H_5)SC(SCH_3) = CH_2$ (unstable)	45
C ₈	C ₆ H ₅ C(S)SCH ₃	C_2H_5MgBr , THF, - 17°, 45 min	CH ₃ I	$C_6H_5C(CH_3)(SCH_3)SC_2H_5$ (80)	163
		$i-C_3H_7MgBr$, THF, -17°, 45 min	CH3I	$C_6H_5C(CH_3)(SCH_3)SC_3H_7-i$ (80)	163
		$CH_3MgBr, THF,$ -20°, 1 hr, then reflux, 18 hr	H ₂ O	$C_6H_5C(SCH_3) = C(SCH_3)C_6H_5$ (E) and (Z) (-)	163
C ₁₃	C ₆ H ₅ C(S)SC ₆ H ₅	C_6H_5Li , either, -78°, 10 min	CH₃OH	$C_6H_5CH(SC_6H_5)_2$ (49)	162
		C ₆ H ₅ Li, ether, room temperature,	CH ₃ OH	$C_6H_5CH(SC_6H_5)_2$ (34)	162
		10 min		$C_6H_5C(SC_6H_5)=C(SC_6H_5)C_6H_5$ (19)	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₆	S CH=CH ₂	<i>n</i> -C ₄ H ₉ Li, THF, - 78° to 0°	CH3I	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	9
			C₄H₃CHO	S CHCH ₂ CH(OH)C ₆ H ₅ (90)	9
			\bigcirc°	$ \begin{array}{c} S \\ S \\ CH = CH_2 \end{array} $ (81)	9
			C ₆ H ₃ COC ₆ H ₃	$ \begin{array}{c} S \\ S \\ C_6H_5 \end{array} (98) $	9
	SCHCH ₃	<i>n</i> -C ₄ H ₉ Li, THF, -20°	I(CH ₂) ₅ Cl, -45° to -25°	SCH=CH ₂ (71) (CH ₂) ₅ Cl	368
C ₇	SCHCH ₂ CN	C_2H_5ONa , C_2H_5OH , -20°, 30 min	CH ₃ CO ₂ H	S CH=CHCN (-)	507
	S CHCH ₂ CN	<i>n</i> -C ₄ H ₉ Li, THF, -78°, 30 min	C_2H_5I , -78°, 1 hr	A, SCHCH(CN)C ₂ H ₃	507
	S or S CH=CHCN			B, S + S CH=C(CN)C ₂ H ₅ A: 95, B: 5 (74)	

TABLE IX. DITHIOKETALS

	No. of C	Paastant	Base and Conditions	Quenching Respent	Product(s) and Vield(s) (%)	Dafa
	Atoms	Reactain	base and conditions	Quenening Reagent		Keis.
	C7 (Contd.)	S CHCH2CN	<i>n</i> -C₄H₂Li, TӉF, — 78°, 30 min	i-C ₃ H ₇ Br, -78° to room temperature	A, S CHCH(CN)C ₃ H ₇ -i	507
		S or S CH=CHCN			B, $CH = C(CN)C_3H_{7}i$	
104		S CHCH=CH ₂	n-C4H9Li, THF, -80°	CH3I	$CH_{3} = CH = CHC_{3}H_{11} - \pi (100)$	164
		S C(CH ₃) ₂	n-C4H9Li, THF, [(CH3)2N]3PO, -78°	i-C ₃ H ₇ Cl	$ (S = C(CH_3) = CH_2 (92) $	109
		S CHCH2SCH3	LDA,[CH ₃) ₂ N] ₃ PO, THF, -78°	n-C ₆ H ₁₃ I	$ \begin{array}{c} S \\ CH = CHSCH_{3} \end{array} $ (92)	382
				C ₆ H ₅ CH ₂ Br	$CH=CHSCH_3 $ (94)	382
	C ₈	S CHCH=CHCH,	n-C4H9Li, THF, -80°	CH3I	$CH=CHC_6H_{13}-sec (100)$	164
			<i>t</i> -C₄H9Li, THF, −80°	CH3I	CH=CHCH(CH ₃)C ₄ H ₉ -t (not isolated)	164
			LDA. THF 80°	снл	$S_{1,CH=CHCH=CH_{1}}$ (100)	164
		020		eng.	S CH ₃	3.52
		S C(CH ₃)CH=CH ₂	<i>n</i> -C ₄ H ₉ Li, THF, -80°	CH3I	$C(CH_3) = CHC_5H_{11} - n$ (not isolated)	164
		S	<i>n</i> -C ₄ H ₉ Li, THF, [(CH ₃) ₂ N] ₃ PO	C ₆ H ₃ CH ₂ Br	(80)	109
		S CH=C(CH ₃) ₂	<i>n</i> -C₄H ₉ Li, THF, −20°, 6 hr	CH ₂ =CHC(CH ₂ Br)=CH ₂ , cis Nal	$CH=C(CH_{3})=CH_{2}$ $CH=C(CH_{3})_{2}$ $CH=C(CH_{3})_{2}$ $CH=C(CH_{3})_{2}$	548
		$CH_3C \equiv CCH(SC_2H_5)_2$	C ₂ H ₅ ONa (cat),	H ₂ O	$CH_3CH = C = C(SC_2H_5)_2 (-)$	281
10			$C_2H_5ONa, C_2H_5OD, 20^\circ$ LiNH ₂ , NH ₃ (liq), 1 min	H ₂ O	$CH_3CD=C=C(SC_2H_5)_2 (-)$ A, CH_3CR=C=C(SC_2H_5)_2 +	281 281
S,					B, $CH_3C \equiv CCR(SC_2H_5)_2$ A : 40 B : 60 B = H (-)	
			LiNH ₂ , NH ₃ (liq)-THF,	CH3I	A (trace), B (58), $R = CH_3$	281
			n-C ₄ H ₉ Li, ether-THF, 1:2, -65°, 1 min	CH3I	A (0), B (78), $R = CH_3$	281
	C,	S CHCH(CN)C ₂ H ₅	C ₂ H ₅ ONa, C ₂ H ₅ OH, -20°, 30 min	CH3CO2H	$A_{1} \underbrace{ \begin{pmatrix} S \\ S \end{pmatrix}}_{CHCH(CN)C_{2}H_{3}}$	507
					B, S A: 77, B: 23 (-)	
		(s s	n-C4H9Li, THF, [(CH3)2N]3PO	n-C ₇ H ₁₅ I	$\int_{S}^{S} C_{7}H_{15} n (75)$	109

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₉ (Contd.)	S S S C(C H) = CHCH	n-C4H9Li, THF, [(CH3)2N]3PO	CH3I	C(C ₂ H ₃)=CHCH ₃	
	86455.064 F.	$\int_{S} \int_{CHC_4H_9-n} CHCH_3$		i-C3H-CI	A. $\mathbf{R} = \mathbf{C}\mathbf{H}_{3}$ (87) A. $\mathbf{R} = \mathbf{C}_{3}\mathbf{H}_{7}$ - <i>i</i> (80)	109 109
				\bigcirc	A, R = (82)	109
100			<i>n</i> -C₄H9Li, THF, [(CH3)2N]3PO	CH3I	$\bigcup_{S} \bigcup_{R} CH = CHC_{3}H_{7} \cdot n$	
			LDA, [(CH ₃) ₂ N] ₃ PO, THF, -78°	СН3ОН	A, R = CH_3 (90) A, R = H (86)	109 382
				CH ₃ I n-C ₆ H ₁₃ I	A, R = CH ₃ (88) A, R = C ₆ H ₁₃ -n (81)	382 382
				CH ₃ SSCH ₃	A, SCH ₃ SCH ₂ CH=CHC ₂ H ₂ ,	382
					B, S + S CHCH(SCH.)C.Hn	
		$C_2H_3C\equiv CCH(SC_2H_3)_2$	$n-C_4H_9Li$, ether, -33° , 1 min	H ₂ O	A: 1, B: 1 (65) A, C ₂ H ₅ C \equiv CCH(SC ₂ H ₅) ₂ + B, C ₂ H ₅ CH \equiv C=C(SC ₂ H ₅) ₂	281
			n-C ₄ H ₉ Li, ether-THF, 1:2, -65°, 1 min	H ₂ O	A: 53, B: 47 (-) A: 36, B: 64 (-)	281
			C ₂ H ₅ ONa (cat),	H ₂ O	$C_2H_5CH=C=C(SC_2H_5)_2$ (-)	281
			LiNH ₂ , NH ₃ (liq), 1 min	H ₂ O	$\begin{array}{c} A, C_2H_5C \equiv CCH(SC_2H_5)_2 \\ + \end{array}$	
				122-1227	B, $C_2H_3CH=C=C(SC_2H_5)_2$ A: 70, B: 30 (-)	281
			NaNH ₂ , NH ₃ (liq), 1 min K NH NH (lic)	H ₂ O	A: 40, B: 60 ()	281
			1 min n-C. H.Li. ether-THF.	CH ¹	$A, C_2H_4C \equiv CCR(SC_2H_4)_2$	
			1:2,65°, 1 min		$_{+}^{+}$ B, C ₂ H ₅ R=C=C(SC ₂ H ₅) ₂	1
				i-C ₃ H ₇ I	A: (66), B: (trace), $R = CH_3$ A: (55), B: (trace), $R = C_3H_7$ -i	281
				CH ₂ =CHCH ₂ Br CH ₃ OCH ₂ Cl	A: (78), B: (trace), $R = CH_2CH=CH_2$ A: (71), B: (0), $R = CH_2OCH_3$	281
		CH ₃ OC(CH ₃) ₂ C≡CCH(SCH ₃) ₂	n-C ₄ H ₉ Li (2 eq), ether, -50°, 35 min	СН3СОСН3 Н2О	A: (82) , B: (0) , R = C(OH)(CH ₃) ₂ (CH ₃) ₂ C=C=C=C(SCH ₃) ₂ (75)	170
107	C10	S S C ₆ H ₄ Br-m	n-C₄H₀Li, THF	CH ₂ CI	S C ₆ H ₄ Br-m (-)	399
		Ś	Ouinoline, K. THF, 20°,	n-C₄H₀Br, 0°, then 25°, 2 hr	S C ₆ H ₃ (33)	600
		S C6H3	3 hr	n-C. H. Br. 0° then 25° 2 hr	C_4H_9-n	600
			THF, 20°, 3 hr 2-Phenylpyridine, K.	n-C ₄ H ₉ Br, 0°, then 25°, 2 hr	" (28)	600
			THF, 20°, 3 hr 2,6-Diphenylpyridine, K,	<i>n</i> -C ₄ H ₉ Br, 0°, then 25°, 2 hr	" (50)	600
			THF, 20°, 3 hr 2,4,6-Triphenylpyridine,	n-C ₄ H ₉ Br, 0°, then 25°, 2 hr	" (52)	600
			K, THF, 20°, 3 hr 2-[2-Pyridyl]pyridine,	<i>n</i> -C ₄ H ₉ Br, 0°, then 25°, 2 hr	" (16)	600
			K, THF, 20°, 3 hr 2,4,6-Triphenyltriazine, K, THF, 20°, 3 hr	<i>n</i> -C ₄ H ₉ Br, 0°, then 25°, 2 hr	" (25)	600

No.					
Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₀ (Contd.)	S C.H.	n-C4H9Li (1.2 eq), C6H14, THF, - 78°,	CH ₃ SSCH ₃	SC6H3	
	5 68113	2 hr n-C ₄ H ₉ Li, THF, -60°,	(CH ₃) ₃ SiCl, -30° to -15°	A, $R = SCH_3$ (95) A, $R = Si(CH_3)_3$ (90)	258 377
		1 hr $n-C_4H_9Li$ (1.05 eq), THF, -40° , then -25° to -15° ,	ŀC₃H₁I	A, R = $C_3 H_7 - i$ (97)	573
		1.5-2.5 hr $n-C_4H_9\text{Li} (1 \text{ eq}), \text{THF},$	i-C ₃ H ₇ I	" (90)	224
		-30° , 1 nr $n-C_4H_9Li$, THF, -78° 10 0°	i-C ₃ H ₇ I	" (86)	9
		n-73 10 0 $n-C_4H_9Li$, THF, -60° to -75° , 1 hr, then -50° , 6 hr	D ₂ O	A, $R = D$ (95)	571
		$\begin{array}{c} n\text{-}C_4H_9Li, \text{THF}, \\ -40^\circ, 1 \text{ hr} \end{array}$	CA.	$A, R = \bigcirc \bigcirc$	-335
			0°, 10 days	$A, R = \tag{95}$	335
		n-C4H9Li, THF	0°, 2.5 days BrC ₆ H ₃ (NO ₂) ₂ - $o_{s}p$, -20°, 2 hr, then 0°, 1 hr	$A, R = \bigcup_{S \leftarrow C_6H_5}^{S} (-)$	336
				~	
				A, R = (50)	336
		n-C₄H₂Li (2 eq), THF, - 30°, 30 min	$CO_2, 2 hr$	$A, R = CO_2 H (-)$	414
		n-C₄H₂Li, THF, −78°, 1 hr	$\sum_{N}^{C_6H_5}$, -78°, 2 hr,	$A, R = - \bigvee_{C_6H_5}^{NH} (54)$	527
			Si(CH ₃)(C ₆ H ₅)Cl	Si(CH ₃)(C ₆ H ₅)	
		$n-C_4H_9Li$, ether, -25°, 1.5 hr	0°, 3 hr	A, R = (78)	240
		<i>n</i> -C₄H9Li, THF, −23°, 2 hr	$(C_6H_5)_3$ SiCl, 0° $(C_2H_5)_3$ GeBr, 0°, then room temperature, 20 hr	A, $R = Si(C_6H_5)_3$ (66) A, $R = Ge(C_2H_5)_3$ (70)	240 240
		n -C ₄ H ₉ Li, THF, -30°	$(C_6H_5)_3$ SnCl C_8H_5 SO $_3C_2H_5$ C_8H_5 SO $_3C_3H_7-n$ $p-CH_3C_6H_4$ SO $_3C_3H_7-n$ C_8H_5 SO $_3C_4H_9-n$ C_6H_5 SO $_3C_8H_1,7-n$ $p-CH_3OC_6H_4CH=CHNO_2,$	A, $R = Sn(C_6H_{3})_3$ (79) A, $R = C_2H_3$ (92) A, $R = C_3H_{7}$ -n (87) A, $R = C_3H_{7}$ -n (85) A, $R = C_4H_{9}$ -n (89) A, $R = C_8H_{17}$ -n (90) A, $R = CH(CH_2NO_2)C_6H_4OCH_3$ -p (90)	240 229 229 229 229 229 229 572,575
			-78° o,o'-(CH ₃ O) ₂ C ₆ H ₃ CH=CHNO ₂ ,	A, $\mathbf{R} = CH(CH_2NO_2)C_6H_3(OCH_3)_2 - o_1o'$ (72)	572,575
	(s)	n-C4H9Li, THF, -80°	H ₂ O	$S = C_4H_{9}-n (-)$	164
			D₂O CH₃I	A, $R = H$ (-) A, $R = D$ (-) A, $R = CH_3$ (-)	164 164

A, R =
$$C_2H_5$$
 (92)
 229

 A, R = C_3H_7 -n (87)
 229

 A, R = C_3H_7 -n (85)
 229

 A, R = C_4H_7 -n (89)
 229

 A, R = C_8H_1 -n (89)
 229

 A, R = C_8H_1 -n (90)
 229

	No.					
	of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₀ (Contd.)	(stop)	<i>n</i> -C₄H ₉ Li, C ₅ H ₁₂ , DDB, −80°	CH3I, hydrolysis	$z_{\rm D} = -1.8^{\circ}$	4, 575
110		(s)	LDA, [(CH ₃) ₂ N] ₃ PO, THF, –78°	CH3I		382
					A: 1, B: 5 (78)	
				СН3ОН	(73)	382
		(s)	LDA, [(CH ₃) ₂ N] ₃ PO, THF, -78°	СН3ОН	SR	382
		~		CH ₃ I CH ₂ =CHCH ₂ Br	A. $R = H$ (93) A. $R = CH_3$ (74-87) A. $R = CH_2CH=CH_2$ (86)	109,382 382
		⊂s s ⊂	<i>n</i> -C4H9Li, THF, –78°	CH=CHNO ₂	$A, R = CH(CH_2NO_2) $ (35.5)	574
	C11	S C ₆ H ₄ CN-p	n-C₄H₂Li, THF	CH2CI	S C6H4CN-p (-)	399
		$\left\langle s \right\rangle$	n-C₄H₀Li, THF, -78°, 1 hr	○ , −78°, 2 hr	S = O = O (88)	249
			n-C ₄ H ₉ Li (1 eq), THF, -78°, then -30°, 1 hr	$\bigcup_{-78^{\circ}}^{O} CH = CHNO_2,$	$A, R = CH(CH_2NO_2) \qquad \qquad O \qquad (70)$	574
111		A s	LDA, [(CH ₃) ₂ N] ₃ PO, THF, -78°	CH ₃ I	(81)	382
				CH2=CHCH2Br	A. $free free free free free free free fre$	382
					B, AS	
		C ₆ H ₅ CH(SC ₂ H ₅) ₂	NaNH ₂ (1 eq), [(CH ₃) ₂ N] ₃ PO, 0°, then room temperature, 8 br	<i>n</i> -C₄H ₉ Br, 50°, 3 hr	$C_{H_2CH=CH_2}$ A: 1.7, B: 1 (82) $C_6H_5C(C_4H_9-n)(SC_2H_5)_2$ (35) $+ C_6H_5CH(SC_2H_5)_2$ (33)	110
			NaNH ₂ (2 eq), NH ₃ (liq)	C ₂ H ₅ Br (2 eq), overnight, room temperature	$n-C_{4}H_{9}SC_{2}H_{5}^{\top}(-)$ $C_{6}H_{3}C(SC_{2}H_{5})_{2}R$ $A, R = C_{2}H_{5} (87)$	49

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
н	C ₁₁ (Contd.)	C ₆ H ₅ CH(SC ₂ H ₅) ₂		i-C3H7Br n-C4H9Br sec-C4H9Br C2H3SSC2H3	A, R = C_3H_7 - <i>i</i> (80) A, R = C_4H_9 - <i>n</i> (85) A, R = C_4H_9 -sec (84) A, R = SC_2H_5 (76)	49 49 49 49
		SCHCH(C ₂ H ₅)CO ₂ C ₂ H ₅	C2H3ONa, C2H3OH	СН3СО2Н	A, S CHCH(C ₂ H ₅)CO ₂ C ₂ H ₅	507
				ā	$B, S \\ S \\ CH = C(C_2H_5)CO_2C_2H_5$ A: 82, B: 18 (-)	
	C ₁₂	SCH=CHC6H,	r-C4H9OK, r-C4H9OH, 110°	-	$A_{1} \underbrace{S}_{CH=CHC_{6}H_{5}}^{R}$	370
			t-C.H.OK. t-C.H.OD.	_	B, S CHCHRC ₆ H ₅ A: 1, B: 2, R = H (-) A: 1, B: 2, R = D (-)	370
			110° n-C4H9Li n-C4H9Li (1.2 cq), C6H14, THF, -78°,	CH ₃ I CH ₃ SSCH ₃	A: 1, B: 1, R = CH ₃ (-) A: 1, B: 0, R = SCH ₃ (-)	370 258
			2 nr $n-C_4H_9Li$, THF, -30° to -20° , 1 hr	D2O CH3I CH3OTs (CH3)2SO4 (CH3)3SiCl	A: 100, B: 0, $R = D$ (70) A: 56, B: 44, $R = CH_3$ (60) A: 82, B: 18, $R = CH_3$ (80) A: 100, B: 0, $R = CH_3$ (55) A: 100, B: 0, $R = (CH_3)_3Si$ (72)	231b 231b 231b 231b 231b 231b
				n-C ₃ H ₇ I n-C ₃ H ₇ Br C ₆ H ₅ CH ₂ OTs C ₆ H ₅ CH ₂ CI C ₆ H ₅ CH ₂ Br C ₆ H ₅ CH ₂ I m-CH ₃ OC ₆ H ₄ CH ₂ Br	A: 63, B: 37, $R = C_3H_7-n$ (79) A: 73, B: 27, $R = C_3H_7-n$ (57) A: 26, B: 74, $R = C_6H_5CH_2$ (74) A: 22, B: 78, $R = C_6H_5CH_2$ (66) A: 14, B: 86, $R = C_6H_5CH_2$ (75) A: 10, B: 90, $R = C_6H_5CH_2$ (60) A: 10, B: 90, $R = m-CH_3OC_6H_4CH_2$ (69)	231b 231b 231b 231b 231b 231b 231b 231b
		S CHCH ₂ C ₆ H ₅	1-C₄H9OK, 1-C₄H9OH, 110°	-	$A, \bigcirc S \\ CH = CHC_6H_5$	370
		CeH,			B, S CHCH ₂ C ₆ H ₅ A: 1, B: 2 $(-)$ C ₆ H ₅	
-		S H	<i>n-</i> C4H9L1, 1HF	D ₂ O, DCI	$\sim s D C_{6}H_{5}$	399
13			n-C4H9Li, C6H12, THF, [(CH3)2N]3PO	D ₂ O, DCl		399
					B, $S_{S} - C_{6}H_{5}$ A: 85-89, B: 11-15 (-)	
		S $C_6H_3(CH_3-m)(OCH_3-p)$	n-C4H9Li, THF,35°, 1.5 hr	Br(CH ₂) ₄ Br	$(p-CH_3O)(m-CH_3)C_6H_3 \underset{S}{\overset{C_6H_3(CH_3-m)(OCH_3-p)}{(CH_2)_4}} $ (77)	399
		S C ₆ H ₃ (OCH ₃) ₂ -m,p	n-C4H9Li, THF, -35°, 1.5 hr	Br(CH ₂) ₃ Br, -10°, 2 hr	$S = C_{6}H_{3}(OCH_{3})_{2}-m,p$ $C(CH_{2})_{3} = S$ $m,p-(CH_{3}O)_{2}C_{6}H_{3} = S$ (65)	404
	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
-----	----------------------	---	---	--	---	-------
	C ₁₃	S S N	n-C₄H9Li, LiBr, THF, −40°	CH31	(90)	120
114				BrCH ₂ C ₆ H ₄ CH ₂ Br-m		120
		SC6H4CO2C2H5-p	n-C4H9Li, THF	CH ₂ Cl	$S \xrightarrow{C_6H_4CO_2C_2H_5-p} (-)$	399
		$ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	n-C₄H₂Li, THF, −35°, 1.5 hr	Br(CH ₂) ₄ Br, -10°, 2 hr	$(p-C_2H_5O)(m-CH_3O)C_6H_3 \underset{S}{\overset{S}{}} (C_6H_3(OCH_3-m)(OC_2H_3-p))$ (78)	404
	C14		n-C₄H₂Li (2 cq), THF, -30°	BrCH ₂ C ₆ H ₄ CH ₂ Br-m	S S (64-76)	119
			n-C ₄ H ₉ Li (2 eq), THF, reflux, high-dilution technique	BrCH ₂ C ₆ H ₅ CH ₂ Br-p	S (36)	119
				BrC ₆ H ₃ (CH ₂ Br) ₂ -o,p		456
		S C ₄ H ₉ - <i>t</i>	n-C₄H9Li, THF-[(CH3)2N]3PO	СН3І	$\int_{C_4H_{9}-t}^{S} (77)$	109
115	C ₁₇	S C ₆ H ₃	$n-C_4H_9Li$, THF, -20°	CH ₂ CHCH ₂ F, O -20° , then 0°, 7 days	$+ \sum_{+}^{S} C_{6}H_{5} CH_{2}CH(OH)CH_{2}F $ (48)	419
	C ₁₈	S-C ₆ H ₄ CH ₃ -p	n-C4H9Li, THF, –20°	CH_2CHCH_2F , O - 20°, then 0°, 7 days	$ \begin{array}{c} $	419
		$ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	n-C₄H9Li, THF, −35°, 1.5 hr	Br(CH ₂) ₄ Br, -10°, 2 hr (<i>p</i> -C	$S_{C_6H_3(OCH_3-m)(OCH_2C_6H_3-p)}$ $C_6H_5CH_2O)(m-CH_3O)C_6H_3$ $S_{C_6H_5CH_2O}(m-CH_3O)C_6H_3$ $S_{C_6H_5CH_2O}(45)$	404

TABLE IX. DITHIOKETAL (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C19	C ₆ H ₅ CH(SC ₆ H ₅) ₂	NaH, (CH ₃) ₂ NCHO, 0°	CH ₃ I, 6 hr	$C_6H_5CR(SC_6H_5)_2$	153
			C.H.CH.Br. reflux, 30 min	$A, R = CH_3 (03)$ $A, R = CH_3 C_4 H_4 (38)$	153
			CICO ₂ C ₂ H ₅ , reflux, 30 min	$A, R = CO_2C_2H_5 (-)$	153
			BrCH ₂ CO ₂ C ₂ H ₅ , reflux, 30 min	$A, R = CH_2CO_2C_2H_5 (-)$	153
			C ₆ H ₅ COCl, reflux, 30 min	$A, R = COC_6H_5 (38)$	153
		NaH (1 eq), [(CH ₃) ₂ N] ₃ PO-THF, 2:1, 0°, then 15-17°, overnight	CH ₃ I (2 eq), 60°, 5 hr	A, $R = CH_3$ (66)	110
		n-C ₄ H ₉ Li, THF, - 78°, 1 hr	CH ₂ =CHCOCH ₃	$A, R = CH_2CH_2COCH_3 (94)$	251
		CuI (0.5 eq), - 78°, 1 hr	(CH ₃) ₂ C=CHCOCH ₃	$A, R = C(CH_3)_2 CH_2 COCH_3 (82)$	251
			$C_6H_5CH = CHCOCH_3$	$A, R = CH(C_6H_5)CH_2COCH_3 (94)$	251
			C6H5CH=CHCOC6H5	$A, K = CH(C_6H_5)CH_2COC_6H_5$ (94)	231
	CH=CHC ₆ H ₅	<i>n</i> -C₄H9Li, THF, −20°	$\begin{array}{c} CH_2CHCH_2F, -20^\circ, \text{ then } 0^\circ, \\ & & 7 \text{ days} \end{array}$	$+ CH=CHC_{6}H_{5} (52)$	557
				$S \rightarrow CH = CHC_6H_3$ (31)	
C31		n-C4H9Li, THF-[(CH3)2N]3PO	CH3I	s s	109
	Ś			Δ-3:1, Δ-2:3 (75)	

TABLE IX. DITHIOKETALS (Continued)

TABLE X. ETHERS

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C₄	HC≡CCH₂OCH₃	CH ₃ ONa, CH ₃ SOCH ₃ , 90°, 15 min	-	CH ₂ =C=CHOCH ₃ (32)	428
		CH ₃ SOCH ₂ Na, CH ₃ SOCH ₃ , room temperature, 10 hr,	-	A, $CH_2 = C = CHOCH_3$ + B, $HC \equiv CCH_2OCH_3$ A: 50, B: 50 (-)	428
		3 days		A: 100, B: 1 ()	
		t-C ₄ H ₉ OK (cat), neat, 70°, 2-3 hr	-	$CH_2 = C = CHOCH_3$ (82)	432
	CH ₂ =C=CHOCH ₃	$n-C_4H_9Li$, ether, -25° , 10 min	CH ₃ COCH ₃ , -25°, 20 min	$CH_2 = C = C(OCH_3)R$ A, R = C(OH)(CH_3) ₂ (82)	431
			C ₂ H ₅ COC ₂ H ₅ , -25°, 20 min	A, R = C(OH)(C ₂ H ₅) ₂ (84)	431
			CH ₃ CHO, -25°, 20 min	$A, R = CH(OH)CH_3 (80)$	431
			C ₂ H ₅ CHO, -25°, 20 min	$A, R = CH(OH)C_2H_5 (80)$	431
			O ^o ,	$A, R = \bigcirc OH (88)$	431
			-25°, 20 min	A B SOU (20)	
			$CICH_2OC_2H_5, -30^\circ,$	A, $R = SCH_3$ (73) A, $R = CH_2OC_2H_5$ (78)	431 433
			$CiCH(CH_3)OC_2H_5,$	$\Lambda, \mathbf{R} = CH(CH_3)OC_2H_5 (79)$	433
			$CICH(C_2H_5)OC_2H_5,$ -30°, 1 hr	A, $R = CH(C_2H_5)OC_2H_5$ (85)	433
			CH ₂ O (gas), 1 hr	$A_{2}R = CH_{2}OH$ (70)	316
			$CH_2CH_2, -50^\circ,$ O then -15°, 2 hr	$A, R = CH_2CH_2OH (72)$	316

	No. of C Atom	s Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C4	CH2=C=CHOCH3	$n-C_4H_9Li$, THF-ether, 1:1,	$n-C_4H_9Br$, -20° ,	A, $R = C_4 H_9 - n$ (67)	432
	(Contd.)	– 20°, 10 min	⁴ hr $n-C_3H_7Br$, -20° , 4 hr $i-C_3H_7I$, -20° , 4 hr $n-C_3H_7I$, -20° , 4 hr $C_6H_5CH_2Br$, -20° ,	A, $R = C_3 H_7 - n$ () A, $R = C_3 H_7 - i$ (trace) A, $R = C_3 H_7 - n$ (51) A, $R = CH_2 C_6 H_5$ (64)	432 432 432 432
			$n-C_4H_9Li$, ether, -20° , 10 min	4 nr NH ₃ , C ₂ H ₅ Br	A, $CH_2 = C = C(C_2H_5)OCH_3$	432
					B, C ₂ H ₃ CH=C=CHOCH ₃	
118			<i>n</i> -C ₄ H ₉ Li, THF40°, 10 min	CH ₃ COCH ₂ Br, -30°, 45 min, then KOH, ether 0°	C, C ₂ H ₃ C = CH_2OCH_3 A: 45, B: 45, C: 10 (55) CH ₂ =C=CROCH ₃ A, R = 7 (50-75)	562
			<i>n</i> -C ₄ H ₉ Li, THF, -40°, 10 min	CH ₃ COCH(CH ₃)Br, - 30°, 45 min, then KOH, ether, 0°	$\mathbf{A}, \mathbf{R} = \underbrace{\bigvee_{\mathbf{O}}}_{\mathbf{O}} \mathbf{CH}_{3} (50-75)$	562
				CH ₃ COC(CH ₃) ₂ Br, - 30°, 45 min, then KOH, ether, 0°	$A, R = _{O} (50-75)$	562
				C ₆ H ₅ COCH ₂ Br, - 30°, 45 min, then KOH, ether, 0°	$A, R = \bigcup_{O}^{C_0H_5} (50-75)$	562
				$t-C_4H_9COCH_2Br$, - 30°, 45 min, then KOH, ether, 0°	A, R = $\frac{I - C_4 H_9}{O}$ (50-75)	562
			$NaNH_2$, NH_3 , ether	C ₂ H ₅ Br	A, $CH_2 = C = CROCH_3$	
					$^+_{B, RCH=C=CHOCH_3}$	
		_		n-C₃H₂Br n-C₄H9Br	A: 63, B: 37, $R = C_2H_5$ (35) A: 54, B: 46, $R = C_3H_7$ -n (41) A: 53, B: 47, $R = C_4H_9$ -n (44) A: 55, B: 45, $R = C_4H_9$ -n (45) A: 56, B: 44, $R = C_4H_9$ -n (45)	432 432 432 432 432
		\bigcirc	n-C4H9Li, THF, TMEDA,	(CH ₃ CO) ₂ O	CH ₂ =CHCH=CHOCOCH ₃ (65)	215
		0	-65° , then -27° , 2 nr	(CH ₃) ₃ SiCl	$CH_{2} = CHCH = CHOSi(CH_{3})_{3} $ (69) cis	215
		CH2=CHCH2OCH3	sec-C₄H₂Li, THF, −65°, 10 min	O	A, RCH ₂ CH=CHOCH ₃ +	
_						· • • • • •
611					A: 72, B: 28, R = (93)	127
				(CH ₃) ₂ CHCHO	A: 68, B: 32, $R = CH(OH)CH(CH_3)_2$ (99)	127
			$Sec-C_4H_9LI, 1HF, ZnCl_2 (1 eq), -65^\circ, 10 min$	\bigcirc°	A: 0, B: 1, R = OH (92)	127
	C,	$CH_3C \equiv CCH_2OCH_3$ $HC \equiv CCH_2OC_2H_5$	NaNH ₂ (2 eq), NH ₃ (liq) $t-C_4H_9OK$ (cat), neat, 70°,	H ₂ O —	$\begin{array}{l} HC \equiv CCH = CH_2 (82) \\ CH_2 = C = CHOC_2H_5 (85) \end{array}$	183 432
		CH ₂ =C=CHOC ₂ H ₅	2-3 hr NaNH ₂ , NH ₃ , ether	i-C ₃ H ₇ Br	A, CH ₂ =C=CROC ₂ H ₅	432
				n-C₄H ₉ Br	+ B. RCH=C=CHOC ₂ H ₃ A: 50, B: 50, R = C ₃ H ₇ - <i>i</i> (5) A: 63, B: 37, R = C ₄ H ₉ - <i>n</i> (48)	432

TABLE X. ETHERS (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
Cs (Contd.)	\bigcirc	<i>n</i> -C₄H ₉ Li, THF, −65°, then −27°, 17 hr	(CH ₃ CO) ₂ O	\bigcirc -CH=CHOCOCH ₃ (8)	215
		$n-C_4H_9Li$, ether, TMEDA, -65°, then -27°, 1 hr	(CH ₃) ₃ SiCl	A, O Si(CH ₃) ₃	
				B, Si(CH ₃) ₃	
				D, \bigcirc -CH=CHOSi(CH ₃) ₃	
	сн,=снсн,ос,н,	-27°, 1 hr -27°, 16 hr -27°, 64 hr -27°, 260 hr sec-C ₄ H ₉ Li, THF, -65°,	n-C6H13I	A: 68, B: 8, C: 18, D: 6 (66) A: 29, B: 5, C: 16, D: 50 (67) A: 11, B: 1, C: 12, D: 76 (62) A: 2, B: 0, C: 3, D: 93 (61) A, $RCH_2CH=CHOC_2H_5$	215 215 215 215
	-237 - 249-000 - 900 191	10 min		$ \begin{array}{c} + \\ B, CH_2 = CHCH(R)OC_2H_5 \\ A: 75, B: 25, R = C_6H_{13} \cdot n (-) \end{array} $	127
			O	A: 75, B: 25, R = OH (-)	127
C.	нс=ссн.осн.с=сн	7-C.H.LI THE TMEDA	H-0	$HC \equiv CCH(OH)CH = C = CH_{2}$ (10)	440
C.6	CH.=CHCH.OCH.CH=CH.	-80° KNH ₂ (2 eq). NH ₃ , ether	-	$CH_{2} = CH(CH)CH_{2}CH = CH_{2} (10)$	208
	$CH_2 = C(CH_3)CH_2OC_2H_5$	sec-C4H9Li, THF, -65°	n-C ₆ H ₁₃ I	A, $\operatorname{RCH}_2C(\operatorname{CH}_3) = \operatorname{CHOC}_2H_5$	127
			(CH ₃) ₂ C=CHCH ₂ Br CH ₃ SSCH ₃	B, $CH_2 = C(CH_3)CHROC_2H_5$ A: 90, B: 10, R = C ₆ H ₁₃ -n (-) A: 63, B: 37, R = CH ₂ CH=C(CH ₃) ₂ (41) A: 90, B: 10, R = SCH ₃ (79)	127 127
			O ^o	A: 50, B: 50 R = OH (93)	127
		sec-C₄H₂Li, THF, −65°, ZnCl₂ (1 eq)	O	A: 0, B: 97, R = OH	127
	CH ₂ =CHCH ₂ OSi(CH ₃) ₃	sec-C4HوLi, THE-I(CH.), NJ-PO	(CH ₃) ₃ SiCl	$CH_2 = CHCH[Si(CH_3)_3]OR$	240a
		<i>t</i> -C ₄ H ₉ Li, THF, -78°, 1.5 hr	(C ₂ H ₅) ₃ SiCl t-C ₄ H ₉ (CH ₃) ₂ SiCl (CH ₃) ₃ SiCl, -78°,	A, $R = (C_2H_3)_{35}$ (72) A, $R = t - C_4 H_9 (CH_3)_2 Si$ (76) A, $CH_2 = CHCH(R)OSi(CH_3)_3$	240a 240a
			30 min (CH ₃) ₃ SiF, -78°,	B, CH ₂ (R)CH=CHOSi(CH ₃) ₃ A: 100, B: 0, R = (CH ₃) ₃ Si (75) A: 100, B: 0, R = (CH ₃) ₃ Si (50)	240b 240b
			30 min (CH ₃) ₃ SiBr, -78°,	A: 100, B: 0, $R = (CH_3)_3Si$ (50)	240b
			30 min (CH ₃) ₃ SiI, -78°,	A: 100, B: 0, $R = (CH_3)_3Si$ (50)	240Ь
		t-C4H,Li, THF,	$_{30 \text{ min}}^{30 \text{ min}}$ (CH ₃) ₃ SiF, -78°,	A: 35, B: 65, $R = (CH_3)_3Si$ (-)	240b
		[(CH ₃) ₂ N ₃]PO (1.2%)	30 min ZnCl ₂ added (CH ₃) ₃ SiCl, -78°, 30 min	A: 100, B: 0, R = $(CH_3)_3Si$ (45) A: 50, B: 50, R = $(CH_3)_3Si$ (75)	240b 240b
			ZnCl ₂ added (CH ₃) ₃ SiBr, -78°, 30 min	A: 100, B: 0, $R = (CH_3)_3Si$ (68) A: 75, B: 25, $R = (CH_3)_3Si$ (70)	240b 240b
			ZnCl ₂ added (CH ₃) ₃ Sil, - 78°, 30 min	A: 100, B: 0, R = $(CH_3)_3Si$ (40) A: 85, B: 15, R = $(CH_3)_3Si$ (50)	240b 240b

No. of C Atom	s Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₆ (Contd.	$CH_2 = CHCH_2OSi(CH_3)_3$	ℓ-C₄H₂Li, THF, -78°, 30 min	(C ₂ H ₅) ₃ SiCl, - 78°, 30 min	$CH_2 = CHCH[Si(CH_3)_3]OSi(C_2H_5)_3$ (75)	240b
			$CICO_2CH_3$, - 78°, 30 min $CICO_2C_2H_5$, - 78°,	$CH_2 = CHCH(R)Si(CH_3)_3$ $A, R = OCO_2CH_3$ (68) $A, R = OCO_2C_2H_5$ (74)	240b 240b
			$C_6H_5OCO_2C_6H_5$,	$A, R = OCO_2C_6H_5 (45)$	240Ъ
			- 78°, 30 min CH ₃ OCO ₂ CH ₃ , -78°, 30 min	A, $CH_2 = CHCH[Si(CH_3)_3]OCO_2CH_3$	240Ь
_				B, CH ₃ OCOCH ₂ CH=CHOSi(CH ₃) ₃ A: 32, B: 67 (43)	
122			C ₂ H ₅ OCO ₂ C ₂ H ₅ , -78°, 30 min	A, $CH_2 = CHCH(Si(CH_3)_3]OCOC_2H_5$	240b
				B, C ₂ H ₃ OCOCH ₂ CH=CHOSi(CH ₃) ₃ A: 45, B: 35 (43)	240Ь
C7	(CH ₃) ₂ C=C=C=CHOCH ₃	LiNH2, NH3 (liq)	C ₂ H ₅ Br	$(CH_3)_2C=C=C=CROCH_3$ A, R = C ₂ H ₅ (80)	576
		$n-C_4H_9Li$, ether, -30° , -25° , 10 min	CH ₂ O, -30°, then reflux, 30 min	$A, R = CH_2OH (55)$	576
		1.2.000	CH ₃ CHO, -30° CH ₃ COCH ₂ - 30°	A, $\mathbf{R} = CH(OH)CH_3$ (74) A, $\mathbf{R} = C(OH)(CH_3)_3$ (71)	576 576
			$C_2H_5COC_2H_5$, -30°	$A, R = C(OH)(C_2H_5)_2$ (68)	576
			, -30°	$\mathbf{A}, \mathbf{R} = \tag{90}$	576
	CH ₂ =C(CH ₃)CH=C=CHOCH ₃	$n-C_4H_9Li$, ether, -30° , -25° , 10 min	CH ₃ COCH ₃ , -30°	$CH_2 = C(CH_3)CH = C = C(OCH_3)C(OH)(CH_3)_2$ (-)	576
	CH ₂ =C(CH ₃)CH ₂ OCH=CHCH ₃	$n-C_4H_9Li$, C_6H_{14} , ether, TMEDA 5° then 25° 16 hr	H ₂ O	CH ₂ =C(CH ₃)CH(OH)CH=CHCH ₃ (80)	202
	CH ₂ =C(CH ₃)CH ₂ OCH=CHCH ₃ trans	n-C ₄ H ₉ Li, C ₆ H ₁₄ , ether, TMEDA, 5°, then 25°, 16 hr	H ₂ O	CH ₂ =C(CH ₃)CH(OH)CH=CHCH ₃ (34) trans (34)	202
	O CH ₂	sec-C4H9Li, THF, –78°	СН3І	$A, \qquad O \qquad CH_2 \\ + \\ B, \qquad O \qquad CH_2 R$	5
			CH ₂ =CHCH ₂ Br (CH ₃) ₂ (C ₄ H ₉ -t)SiCl CH ₃ CHCHCHCH ₃ O	A: 1, B: 3.5, R = CH ₃ (98) A: 1, B: 1.5, R = CH ₂ =CHCH ₂ (100) A: 1, B: 19, R = (CH ₃) ₂ (C ₄ H ₉ - t)Si (99) A: 1, B: 2.8, R = CH(CH ₃)CH(OH)CH ₃ (39)	618 618 618 618
				A: 7.5, B: 1, R = OH (95)	618
123	CH ₂ =CHCH ₂ OC ₄ H ₉ -n	n-C ₃ H ₇ Li (1.3 eq), C ₅ H ₁₂ ,	C ₆ H ₃ CHO, THF [(CH ₃) ₂ N] ₃ PO, THF THF, CdCl ₂ THF, ZnCl ₂ Hydrolysis	A: 1.2, B: 1, $R = C_6H_5CH(OH)$ (85) A: 1, B: 4 (95) A: 3.4, B: 1 (95) A: 19, B: 1 (100) $n-C_6H_{13}CHO$ (30)	618 618 618 618 203
		<i>n</i> -C ₃ H ₇ Li, THF-C ₅ H ₁₂ , 1:1	Hydrolysis	$CH_2 = CHCH(OH)C_4H_9 - n (-)$ n-C ₆ H ₁₃ CHO (29)	203
	CH ₂ =CHCH ₂ OC ₄ H ₉ - <i>t</i>	n-C ₃ H ₇ Li, C ₅ H ₁₂ sec-C ₄ H ₉ Li, THF, -65°, 10 min	n-C ₆ H ₁₃ I	$CH_{2} = CHCH(OH)C_{4}H_{9} - n (23)$ $CH_{2} = CHC_{4}H_{9} - n (73)$ $A, RCH_{2}CH = CHOC_{4}H_{9} - t (83)$ +	203 203
			Br(CH ₂) ₄ Br <i>i</i> -C ₃ H ₇ I CH ₃ SSCH ₃	B, CH ₂ =CHCH(R)OC ₄ H ₉ -t A: 89, B: 11, R = C ₆ H ₁₃ -n (93) A: 80, B: 20, R = (CH ₂) ₄ Br (90) A: 64, B: 36, R = C ₃ H ₇ -t (65) A: 95, B: 5, R = SCH ₃ (-)	127 127 127 127
			\bigcirc°	A: 23, B: 73, R = OH (72)	127

TABLE X. ETHERS (Continued)

TABLE X. ETHERS (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₈	C ₆ H ₅ CH ₂ OCH ₃	r-C₄H₀Li, TMEDA, THF-ether, 2.6:1, -74°,	D ₂ O	C ₆ H ₅ CHDOCH ₃ (0.95 D) ()	174
		oo min	H ₂ O	C ₆ H ₅ CH(OH)CH ₃ (52)	174
				С6Н3СОСН3 (1)	
				С₅Н₅СНО (0.3)	
		C ₆ H₅Li (1 eq), ether, room temperature, 40 hr	H ₂ O	polymers (45) $C_6H_5CH(OH)CH_3$ (35)	173
				C ₆ H ₅ CH ₂ OCH ₃ (15)	
	CH ₃ C≡CCH ₂ OCH ₂ C≡CCH ₃	n-C4H9Li, THF, TMEDA,	H₂O	polymers (32) CH ₃ C \equiv CCH(OH)C(CH ₃) $=$ C $=$ CH ₂ (64)	440
	i-C ₃ H ₇ C≡CCH ₂ OC ₂ H ₅	-80° KNH ₂ (3 eq), NH ₃ (liq)	H ₂ O	$HC \equiv CCH = C(CH_1)_2$ (85)	183
	$n-C_4H_9C \equiv COC_2H_3$ CH_2C \equiv CCH_2OC_4H_3-n	KNH_2 (2 eq), NH_3 (liq) NaNH ₂ (2 eq), NH_3 (liq)	H ₂ O H ₂ O	$HC \equiv CCH = CHC_2H_5$ (42) $HC \equiv CCH = CH_5$ (82)	183 183
	$C_2H_3OCH_2C\equiv CCH_2OC_2H_5$	NaNH2 (2 eq), NH3 (liq)	H ₂ O	$HC \equiv CCH = CHOC_2H_3$ (79)	183
		-40° to -50° , 35 min	CH ₃ COCH ₃	$CH_2 = C = C = CHOC_2H_3$ (72) A, $CH_2 = C = C = C(OC_2H_3)C(OH)(CH_3)_2$	170
	CH2=CHCH2OTHP	sec-C₄H₂Li, THF, −65°,	n-C ₆ H ₁₃ I	B, C ₂ H ₃ OCH ₂ C≡CCH ₂ OC ₂ H ₅ A: 85, B: 15 (60) A, n-C ₇ H ₁₅ CH=CHOTHP	170
		10 min		$ \begin{array}{c} + \\ \text{B, CH}_2 = \text{CHCH}(C_6\text{H}_{13}\text{-}n)\text{OTHP} \\ \text{A: 54, B: 46} (-) \end{array} $	127
	СН СН=СНОТНР	r-C.H.OK (Leg)	СНЛ	CH-CH=C(CH-)OTHP (83)	105
	enjen-enorm	sec- C_4H_9Li (1 eq), THF,	01131		
		- 78 , 1 m			
	CH ₃ CH=CHCH ₂ OC ₄ H ₉ -n	n-C ₃ H ₇ Li, C ₅ H ₁₂ , THF	Hydrolysis	$n-C_4H_9CH(CH_3)CH_2CHO (-)$	203
	(Ch ₃) ₃ SIC=CCh ₂ OC ₂ h ₃	$n-C_4H_9Li$, THF, -70° , 1 hr, ZnI ₂ , THF, -70° , 1 hr		$(CH_3)_3SIC = CCHKOC_2H_5$ A, R = CH(OH)C ₆ H ₅ (80)	30
			$n-C_7H_{15}CHO$ $n-C_5H_{11}C\equiv CCHO$	A, R = CH(OH)C ₇ H ₁₅ -n (72) A, R = CH(OH)C \equiv CC ₅ H ₁₁ -n (80)	30 30
C,	CH≡CCH ₂ OC ₆ H ₅	t-C4H9OK		$CH_2 = C = CHOC_6H_5$ (67.5)	538
	C ₆ H ₃ OCH ₂ CH=CH ₂	NaNH ₂ , CH ₃ OCH ₂ CH ₂ OCH ₃ ,	H ₂ O	$C_6H_5OCH=CHCH_3$ cis: 97, trans: 3 (-)	395
		KNH ₂ , NH ₃ (liq), 2 hr	H ₂ O	C6H3OH (68)	395
				C ₆ H ₅ OCH=CHCH ₃	
		NaNH ₂ ,	H ₂ O	cis: 65, trans: 35 (32) CH ₃ CH=CHOC ₆ H ₅	601
		THF-[(CH ₃) ₂ N] ₃ PO, 40°, 10 hr		cis: 84, trans: 16 (56)	
		t-C ₄ H ₉ OK, [(CH ₃) ₂ N] ₃ PO, 40°, 5 min	H ₂ O	cis: 94, trans: 6 (67)	601
		n-C ₄ H ₉ Li (2 eq), CH ₃ OCH ₂ CH ₂ OCH ₃ ,	H ₂ O	$C_6H_5COC_2H_5$ (53)	395
		room temperature, 4 hr $n-C_4H_9Li$ (2 eq), CH ₃ OCH ₂ CH ₂ OCH ₃ ,	CH31	$C_6H_5CH(OCH_3)CH=CH_2$ (58) +	395
		0°, 90 sec		$C_6H_5OCH = CHC_2H_5$ (18) cis	
				÷.	
				$C_6H_5COC_3H_{7}-i$ (21)	
				$C_6H_5COC_4H_{9}-t$ (4)	
				C ₆ H ₅ COCH(CH ₃)C ₂ H ₅ (0.5)	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C9 (Contd.)	C ₆ H ₅ OCH ₂ CH=CH ₂	n-C ₄ H ₉ Li (1 eq), CH ₃ OCH ₂ CH ₂ OCH ₃ , room temperature, 30 min	H₂O	$C_6H_5COC_2H_5 (40)$ + $C_6H_5CH(OH)CH=CH_2 (30)$	395
		n-C4H9Li, THF, -78°	СН3І	$C_6H_5OCH_2CH=CH_2 (20)$ A, C_6H_5OCH=CHC_2H_5 cis	
		sec-C₄H₅Li, THF, −65°, 10 min	n-C ₆ H ₁₃ I	$ \begin{array}{c} + \\ B, C_{6}H_{5}OCH(CH_{3})CH=CH_{2} \\ A: 71, B: 24 (-) \\ A, n-C_{7}H_{15}CH=CHOC_{6}H_{5} \\ + \\ \end{array} $	32
			O ^o	B, $CH_2 = CHCH(C_6H_{13}-n)OC_6H_5$ A: 63, B: 37 (-) OH A, OH CH_2CH=CHOC_6H_5	127
				$H_{B, OH} \xrightarrow{+ OH} CH(OC_6H_5)CH = CH_2$	127
		$n-C_4H_9Li-t-C_4H_9OK$ (1 eq each), petroleum ether, - 30°, 1 hr	CH ₃ I, -30°	A, $C_2H_3CH = CHOC_6H_5$ (Z) +	
				B, CH ₂ =CHCH(CH ₃)OC ₆ H ₅ + C, <i>n</i> -C ₅ H ₁₁ CH=CHOC ₆ H ₅	
				$+ D, CH_2 = CHCH(C_4H_9-n)OC_6H_5$	
				E, $CH_2 = CHCH_2OC_6H_5$ A (44), B (16), C (13), D (2), E (7)	89
		sec-C4H9Li, THF, - 80°, 1 hr	СН₃І	A, $C_2H_5CH=CHOC_6H_5$ (Z)	
				$B, CH_2 = CHCH(CH_3)OC_6H_5$	
	CH ₃ CH=CHOC ₆ H, (Z)	$n-C_4H_9Li-r-C_4H_9OK$ (1 eq each),	CH3I, 0°, 1 hr	C. $CH_2 = CHCH_2OC_6H_5$ + D. $CH_2 = CHCCH_2OH$ A (47), B (12), C (11), D (3) A, $C_2H_5CH = CHOC_6H_5$ (Z) +	89
		petroleum etner, 25°, 1 nr		$\begin{array}{c} \text{B, CH}_{3}\text{CH}=\overset{-}{\text{CHOC}}_{6}\text{H}_{5}\\ \text{(Z)} \end{array}$	
	C ₆ H ₅ OCD ₂ CH=CH ₂	n-C4H9Li (2 eq). CH3OCH2CH2OCH3.	H ₂ O	C, $CH_2 = CHCH(CH_3)OC_6H_5$ A (49), B (4), C (1) C_6H_5OH (-)	89 395
		room temperature, 4 hr		$C_6H_5OCD_2CH=CH_2 (-)$ + $C_6H_5CD(OH)CH=CH_2 (-)$	
	$CH_2 = C(CH_3)C \equiv CCH_2OCH_2C \equiv CH$	r-C4H9OK, r-C4H9OH, room temperature, 4 days		+ (15)	342
				(45)	
	$CH_3C\equiv CCH(CH_3)OCH_2C\equiv CCH_3$	$n-C_4H_9Li$, THF, TMEDA, -80°	H ₂ O	$CH_{3}C \equiv CCH(OH)C(CH_{3}) = C = CHCH_{3} (9)$	440
	C ₆ H ₅ CH ₂ OC ₂ H ₅	t-C₄H₂Li, TMEDA, THF-ether, 2.6:1, −60°	H ₂ O	$C_{6}H_{5}CH_{2}OH)C_{2}H_{5} (34)$ $C_{6}H_{5}CH_{2}OH (33)$	174
			D ₂ O	polymers (10) $C_6H_5CHDOC_2H_5$ (-) (0.85D)	174

TABLE X. ETHERS (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₉ (Contd.)	C ₆ H ₃ CH ₂ OC ₂ H ₃	C ₆ H ₃ Li (1 eq), ether, room temperature, 40 hr	H ₂ O	$C_6H_5CH_2OC_2H_5$ (34) + $C_6H_5CH_2OH$ (44) +	173 -
	C ₆ H ₅ CD ₂ OC ₂ H ₅	<i>n</i> -C ₃ H ₇ Na, <i>n</i> -C ₈ H ₁₈ , 0° to 48°	π.	polymers (15) C ₆ H ₅ CHDOH () +	176
		n-C3H7Na	H20	$\begin{array}{c} C_{2}H_{4} (-) \\ C_{6}H_{5}CHDOH \\ + \\ C_{2}H_{4} (91) \\ n-C_{3}H_{7}D (81) \\ + \\ n-C_{3}H_{7}D (81) \\ + \\ \end{array}$	175
	$(C_2H_3)_2C=C=C=CHOCH_3$	r-C ₄ H ₉ OK (cat), CH ₃ SOCH ₃ , 25°, 30 min	12 - 1 770	$n-C_3H_8$ (31) $CH_2=CHC(C_2H_3)=CHCH=CHOCH_3$ cis: 1, trans: 1 (76) $\sim cOH$	576
	OCC 12 C M 2 C M 2	sec-C4H9Li (1.25eq), THF, — 78°	H₂O	A, $CH=CHCH_2CH(CH_3)C_2H_s$ OH H H H $CH=CH_2$ OH A: 1, B: 2 (-) OH	190
	H	sec-C ₄ H ₉ Li (1.25 eq), THF-[(CH ₃) ₂ N] ₃ PO, 96:4, -78°	н₂о	CH=CH ₂ (86)	190
	CH=CH2	sec-C ₄ H ₉ Li (excess), 1HF, -78°	H ₂ O	CH=CHCH ₂ CH(CH ₃)C ₂ H ₃	150
	$OH \\ HC \equiv CCH_2 OC_6 H_{13} - n$	$t-C_4H_9OK$ (cat), neat, 70°,	750	$CH_2 = C = CHOC_6H_{13} - n$ (92)	432
	$C_2H_5OCH(CH_3)C\equiv CCH_2OC_2H_5$	KNH_2 (2 eq), NH_3 (liq) $n-C_4H_9Li$ (2 eq), ether, 40° to -50° 35 min	H ₂ O H ₂ O	$HC \equiv CCH = CHCH_2OC_2H_5 (75)$ $CH_3CH = C = C = CHOC_2H_5$ cis: 1, trans: 1 (76)	183 170
	(C ₂ H ₃) ₃ SiOCH ₂ CH=CH ₂	sec-C ₄ H ₉ Li, THF, – 78°	[(CH ₃) ₂ N] ₃ PO, CH ₃ I, room temperature, 15 min C ₂ H ₅ I	A, $(C_2H_5)_3$ SiOCH=CHCH ₂ R cis + B, $(C_2H_5)_3$ SiOCHRCH=CH ₂ A: 97, B: 3, R = CH ₃ (>95) A: 83, B: 17, R = C ₂ H ₅ (>95) A: 84, B: 16, R = C, H=R, (>95)	32 32 32
			<i>i</i> -C ₃ H ₇ I	A: 60, B: 40, R = C_3H_{7} - <i>i</i> (>95)	32
			Ú	A: 39, B: 61, R = (80)	32
		1-C₄H9Li, THF,	$n-C_3H_7Br$ $CH_2=CHCH_2Br$ $(CH_3)_3SiCl$,	A: 75, B: 25, $R = C_3H_7$ -n (>95) A: 68, B: 32, $R = CH_2CH=CH_2$ (>95) $CH_2=CHCHSi(C_2H_5)_3OSi(CH_3)_3$ (85)	32 32 240Ь
		-78° , 1.5 hr [(CH ₃) ₂ N] ₃ PO, 1.2% added [(CH ₃) ₂ N] ₃ PO, 1.2% added	- 78°, 30 min ZnCl ₂ added (CH ₃) ₃ SiCl, - 78°, 30 min	$CH_2 = CHCHSi(C_2H_3)_3OSi(CH_3)_3 (20)$ A, CH_2 = CHCHSi(C_2H_3)_3OSi(CH_3)_3 + B, (CH_3)_3SiCH_2CH = CHOSi(C_2H_5)_3	240Ъ 240Ъ
		sec-C4H9Li,	(CH ₃) ₃ SiCl	A, 50, B: 50 (87) $CH_2 = CHCHSi(C_2H_5)_3OR$	240a
	n-C4H9(CH3)2SiOCH2CH=CH2	THF : [(CH3)2N]3PO sec-C₄H9Li, THF, −78°	$(C_2H_5)_3$ SiCl [$(CH_3)_2N]_3$ PO, n - C_3H_7 l, room temperature, 15 min	A, $R = (CH_3)_3 Si$ (60) A, $R = (C_2H_3)_3 Si$ (71) A, $n-C_4H_9(CH_3)_2 SiOCH = CHC_4H_9-n$ cis + B, $n-C_4H_9(CH_3)_2 SiOCH(C_3H_7-n)CH = CH_2$ A: 81, B: 19 (>95)	240a 32

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C10	C ₆ H ₃ C≡CCH ₂ OCH ₃	$n-C_4H_9Li$ (2 eq), ether, -75°, 15 min, or THF, -75°,	(CH ₃) ₃ SiCl (2 eq), [(CH ₃) ₂ N] ₃ PO	$C_{6}H_{3}(R)C \Longrightarrow C \Longrightarrow CR'OCH_{3}$ A, R = R' = Si(CH_{3}) ₃ (80)	124, 125
		then - 50	$(CH_3)_2SO_4$ (2 eq),	A, $R = R' = CH_3$ (70)	124, 125
			$CH_{3}I(2 eq),$	A, $R = R' = CH_3$ (70)	124
			$[(CH_{3})_{2}N]_{3}PO,$ $[(CH_{3})_{3}SiCl (1 eq),$ then CH_1 (1 eq),	A, $R = Si(CH_3)_3$, $R' = CH_3$ (70)	124, 125
			$[(CH_3)_2N]_3PO,$ $CH_3I (1 eq),$ then (CH_4) SiCl	A, $R = CH_3$, $R' = Si(CH_3)_3$ (78)	124
			$[(CH_3)_2N]_3PO,$ $C_2H_3Br (1 eq),$ then $(CH_3)_3SiCl$ (1 eq)	A, $R = C_2H_5$, $R' = Si(CH_3)_3$ (82)	124, 125
			$[(CH_3)_2N]_3PO, C_2H_3Br (1 eq), then CH I (1 eq),$	$A, R = C_2 H_5, R' = C H_3$ (76)	124, 125
			$[(CH_3)_2N]_3PO,$ $(CH_3)_3SiCl (1 eq),$ then $(CH_3)_2CO$ (1 ec)	A, $R = Si(CH_3)_3$, $R' = C(OH)(CH_3)_2$ (80)	124
			(1 eq) [(CH ₃)₂N]₃PO, (CH ₃)₃SiCl (1 eq).	A, $R = Si(CH_3)_3$, $R' = CO_2H$ (90)	124
			$[(CH_3)_2N]_3PO,$ $C_2H_5Br (1 eq),$	$A, R = C_2 H_3, R' = H$ (-)	124, 125
			$[(CH_3)_2N]_3PO,$ $n-C_4H_9Br (1 eq),$ then H ₂ O	A, $R = C_4 H_9 - n$, $R' = H$ (-)	124, 125
		n-C ₄ H ₉ Li, THF, -70°, 1 hr, ZnI ₂ , THF, -70°, 1 hr	C ₆ H ₅ CHO	$C_6H_5C \equiv CCHROCH_3$ A, R = CH(OH)C ₆ H ₅ (78)	30
		<i>n</i> -C ₄ H ₉ Li, ether, -65°, 10 min	$n-C_{s}H_{11}C\equiv CCHO$ [(CH ₃) ₂ N] ₃ PO,	A, R = CH(OH)C \equiv CC ₅ H ₁₁ -n (61) C ₆ H ₅ C(C ₂ H ₅)=C=CHOCH ₃ (60)	30 274
	p-CH ₃ C ₆ H ₄ OCH ₂ CH=CH ₂	$n-C_4H_9Li$ (2 eq), $CH_3OCH_2CH_2OCH_3$, room temperature, 4 hr	C ₂ H ₃ I, -65° H ₂ O	p-CH ₃ C ₆ H ₄ COC ₂ H ₃ (62)	203
	C.H.	$n-C_3H_7Na$	H ₂ O	C ₂ H ₄ (95)	105
	0 66113			n-C ₃ H ₈ (98)	
				C ₆ H ₅ CH(OH)CH ₃ (3)	
		<i>n</i> -C ₃ H ₇ Li <i>n</i> -C ₃ H ₇ Na, <i>n</i> -C ₆ H ₁₄ ,	H ₂ O	⁺ C ₆ H ₃ C(CH ₃)(OH)CH(OH)C ₆ H ₃ (26) C ₆ H ₃ COCH ₃ (85-92) C ₆ H ₃ COCH ₃ (57)	105 176
		- 60" 10 0"		С ₆ Н₃СН(ОН)СН₃ (3)	
				$\int_{0}^{+} C_{6}H_{s} (6)$	
				+ C ₆ H ₅ C(CH ₃)(OH)C(CH ₃)(OH)C ₆ H ₅ (26)	
		n-C ₃ H ₇ Na, ether, reflux,		$CH_2 = CH_2$ (99) $C_8H_5COCH_3$ (85-92)	176
		16-20 hr C ₆ H ₅ Li, ether, reflux overnight		C ₆ H ₅ COCH ₃ (71)	176
				$\int_{0}^{+} C_{6H_{s}} (-)$	
	C ₆ H ₅ CH ₂ OCH ₂ CH=CH ₂	r-C4H9OK, r-C4H9OH,	<u> </u>	C ₆ H ₅ CH ₂ OCH=CHCH ₃ (84)	202
	C ₆ H ₃ CH ₂ OCH=CHCH ₃ trans	CH ₃ SOCH ₃ , 37°, 3 days $n-C_4H_9Li$, C_6H_{14} , ether, TMEDA, -65°, then -27°, 16 hr	H ₂ O	trans C ₆ H ₅ CH(OH)CH=CHCH ₃ (100) trans	202

TABLE X. ETHERS (Continued)

TABLE A. LINERS (Continued	TABLE	X.	ETHERS	(Continued
----------------------------	-------	----	--------	------------

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₀ (Contd.)	C ₆ H ₃ CH ₂ OCH=CHCH ₃ cis	$n-C_4H_9Li, C_6H_{14}$, ether, TMEDA, -65°, then -27°,	H ₂ O	C ₆ H ₅ CH(OH)CH=CHCH ₃ (87) cis	202
			10 hr $n-C_4H_9Li$, C_6H_{14} , ether, TMEDA, -65°, then -27°,	D ₂ O, -75°	A, C ₆ H ₅ CHDOCH=CHCH ₃ (0.8 D)	202
_			Shr $n-C_4H_9Li, C_6H_{14}, ether,$	(CH ₃) ₃ SiCl	B, $C_6H_5CH(OH)CH=CHCH_3$ <i>cis</i> A: 1, B: 3 (95) $C_6H_3CH_2OCH=CHCH_3 (-)$	202
132			1 MEDA, -65° , then -27° , 4 hr		$C_6H_3CH[Si(CH_3)_3]OCH=CHCH_3 (-)$	
			- C H Li THE _ 40° 30 min	чо	$C_6H_5CH[OSi(CH_3)_3]CH=CHCH_3$ (-) cis $C_8H_5CH(OH)C_8H_{ext}$ (73)	198
		C6H3CH2OC3H7-1	-C4119L1, 1111, -40, 50 mm	nyo	$C_6H_5CH_2OH$ (22)	
					$C_6H_5COC_3H_7-i$ (-)	
			$t-C_4H_9Li$, TMEDA, THE-ether 26:1 - 60°	H ₂ O, 25°	$ \begin{array}{c} i-C_3H_7C_6H_4CHO-p (-) \\ C_6H_5CH(OH)C_3H_7-i (62) \\ + \end{array} $	174
			10 min		$C_6H_5CH_2OH$ (13)	
					$C_6H_5CH(OH)C_4H_9-n$ (7)	
					polymers (7)	
		COCH2CH=CH2		D₂O	$C_{6}H_{3}CHDOC_{3}H_{7}-i (-)$ (0.86 D) \int_{0}^{OH}	174
		A.	CH ₃ Li (excess), THF-ether, 1:1, room temperature	H ₂ O	A.	189
					$\begin{array}{c} + \\ B, \\ A: 3, B: 7 (55) \end{array}$	đaj stati
		C=C=CHOCH3	t-C ₄ H ₉ OK (cat), CH ₃ SOCH ₃ , 20°, 1 min	-	CH=C=CHOCH ₃ (-)	576
			40°, 20 min		(79)	576
133			60°, 70°, 1 hr	-	$C_{6}H_{5}CH = CHCH_{3} (82)$	576
		HC≡CCH2OCH2C≡CC4H9-n	NaNH2 (3 eq), NH3 (liq)	H ₂ O	$HC \equiv CCH = CHC_{3}H_{7} - n (61)$	183
			$n-C_4H_9Li$, ether, TMEDA, -65°, then -27°, 28 hr	(CH ₃ CO) ₂ O	(CH ₃) ₂ C=CH H CH=CHOCOCH ₃	215
		0° CH=C(CH ₃) ₂			H CH3	
					$(CH_3)_2C=CH$ $CH=CHOCOCH_3$ (62) cis	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₀ (Contd.)	CH=C(CH ₃) ₂	n-C ₄ H ₉ Li, ether, TMEDA, -65°	(CH ₃) ₃ SiCl	$A, H CH=CHOSi(CH_3)_3$	
134		– 27°, 10 min – 27°, 2.5 hr n-C₄H9Li, ether, TMEDA, – 65°	H2O	B, $(CH_3)_2C=CH$ $CH=CHOSi(CH_3)_3$ + C, O $CH=C(CH_3)_2$ A + B (80), C (20) A + B (79), C (trace) $(CH_3)_2C=CH$ H CH_3 H CH_3 $CH_$	215 215
				C. $CH = C(CH_3)_2$ A: 2. B: 3 (40). C (60)	215
		$n-C_4H_9Li$, ether, TMEDA, -65°, then -27°, 10 min		A: 3, B: 2.9 (40), C (0)	215
	(C ₂ H ₅) ₂ C=C=C=CHOC ₂ H ₅	$n-C_4H_9Li$, ether, -5° , 1.5 hr	CH ₃ COCH ₃ , -20°,	(C ₂ H ₅) ₂ C=C=C(OC ₂ H ₅)C(OH)(CH ₃) ₂ (70)	316
	C ₆ H ₅ CH ₂ OGe(CH ₃) ₃	t-C4H9Li, THF-n-C5H12, 1:1, -78°, 0.17 hr	CH ₃ CO ₂ H	A, C ₆ H ₅ CHORGe(CH ₃) ₃ +	
		LDA, THF, <i>n</i> -C ₆ H ₁₄ , 25°,	CH3I (CH3)2SO4 CH3CO2H	B, $C_6H_5CH_2OR$ A: 71, B: 29, R = H (-) A: 83, B: 17, R = CH ₃ (-) A: 73, B: 27, R = CH ₃ (-) A: 70, B: 30, R = H (-)	128 128 128 128
	C ₆ H ₅ CHDOGe(CH ₃) ₃ S(+)	$t-C_4H_9Li (2 eq),$ THF-n-C ₅ H ₁₂ , 1:1, -50°,	CH ₃ CO ₂ H	C ₆ H ₅ CD(OH)Ge(CH ₃) ₃ S(-) (80)	608
	C ₆ H ₃ CH ₂ OSi(CH ₃) ₃	3 min t-C ₄ H ₉ Li, THF, -78°	H ₂ O	C ₆ H ₅ CH(OH)Si(CH ₃) ₃ (95)	47
		-0° -78° $n-C_4H_9Li, THF, 25^{\circ}$ $t-C_4H_9Li, n-C_5H_{12}, TMEDA,$ $-23^{\circ} - 3 hr$	CH3I H2O CH3CO2H	(79) $C_6H_5CH(CH_3)OSi(CH_3)_3$ (-) $C_6H_5CH(OH)Si(CH_3)_3$ (86) $A, C_6H_5CH(OH)Si(CH_3)_3$	47 47 128 128
135		20,0 m		B, C ₆ H ₃ CH ₂ OH +	
			(C ₂ H ₅) ₃ SiCl	C, C ₆ H ₅ CH ₂ OSi(CH ₃) ₃ A: 61, B: 13, C: 26 (-) A, C ₆ H ₅ CH[OSi(C ₂ H ₅) ₃]Si(CH ₃) ₃	128
				B, $C_6H_5CH_2OSi(C_2H_5)_3$	
				C, C ₆ H ₅ CH ₂ OSi(CH ₃) ₂ CH ₂ Si(C ₂ H ₅) ₃ +	
		LDA, THF, <i>n</i> -C ₆ H ₁₄ , 25°,	CH₃CO₂H	D, $C_6H_5CH_2OSi(CH_3)_3$ A: 60, B: 16, C: 21, D: 3 (-) A, $C_6H_5CH(OH)Si(CH_3)_3$	128
				B, C ₆ H ₅ CH ₂ OH	
				C, C ₆ H ₅ CH ₂ OSi(CH ₃) ₃ A: 84, B: 14, C: 2 (-)	

TABLE X. ETHERS (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C10	C ₆ H ₅ CH ₂ OSi(CH ₃) ₃	t-C4H9Li, THF-n-C5H12, 1:1,	CH3I	A, C ₆ H ₅ CH(CH ₃)OSi(CH ₃) ₃	128
(Contd.)		$-50^{\circ}, <2 \min$		B, C ₆ H ₅ CH(OCH ₃)Si(CH ₃) ₃	
				C, C ₆ H ₃ CH ₂ OCH ₃	
			(CH ₃) ₂ SO ₄ (C ₂ H ₅) ₃ SiCl	+ D, $C_6H_3CH_2OSi(CH_3)_2C_2H_5$ A: 91, B: 7, C: 1, D: 1 (-) A: 36, B: 62, C: 1, D: 1 (-) A, $C_6H_5CH[OSi(C_2H_5)_3]Si(CH_3)_3$	128 128
				B, C ₆ H ₅ CH ₂ OSi(C ₂ H ₅) ₃	
			CH₃CO₂H	C, $C_6H_5CH_2OSi(CH_3)_2CH_2Si(C_2H_5)_3$ A: 96, B: 2, C: 2 (-) A, $C_6H_5CH(OH)Si(CH_3)_3$	128
				B, C₀H₃CH₂OH	
		<i>t</i> -C ₄ H ₉ Li, THF- <i>n</i> -C ₅ H ₁₂ ,	CH₃I	+ C, C ₆ H ₃ CH ₂ OSi(CH ₃) ₃ A: 95, B: 1, C: 4 (-) A, C ₆ H ₃ CH(CH ₃)OSi(CH ₃) ₃	
		1:1, -40 , 30 mm	(CH ₃) ₂ SO ₄ (CH ₃) ₃ SiCl CH ₃ CO ₂ H	B, $C_8H_5CH[Si(CH_3)_3]OCH_3$ A: 99, B: 1 (-) A: 40, B: 60 (-) $C_6H_5CH[OSi(CH_3)_3]Si(CH_3)_3$ (-) A, $C_8H_5CH(OH)Si(CH_3)_3$	128 128 128 128
				H, C₄H₃CH₂OH	
				+ C, C₀H₃CH₂OSi(CH₃)₃ A: 97, B: 1, C: 2 (−)	
					129
		$n-C_4H_9Li$, TMEDA, $n-C_6H_{14}$, -23°, 0.17 hr	CH₃CO₂H	C ₆ H ₃ CH ₂ OH (-)	128
	C ₆ H ₅ CHDOSi(CH ₃) ₃ S(+)	<i>t</i> -C ₄ H ₉ Li (1.5 eq), THF, -78° to -50°	CH ₃ CO ₂ H	S(+)	603
				$B, C_6H_3CHDOSi(CH_3)_3$ S(+) +	
				C, C ₆ H ₃ CD(OH)Si(CH ₃) ₃	
			CH ₃ I, then CH ₃ CO ₂ H	A: 3, B: 24, C: 73 (96) A, C ₆ H ₅ CD(CH ₃)OSi(CH ₃) ₃ +	603
	n-C₅H₁₁C≡CCH₂OC₂H₅	n -C ₄ H ₉ Li (2.2 eq), ether, -78°	H ₂ O	B, $C_6H_5CD(OH)Si(CH_3)_3$ A: 40, B: 60 (-) $n-C_5H_{11}CH=C=CHOC_2H_5$ (-)	273
			(CH ₃) ₂ SO ₄ , -78°	$n-C_5H_{11}C\equiv CCH_2OC_2H_5$ (-) $n-C_5H_{11}CR=C=CHOC_2H_5$ A, R = CH ₃ (80)	273
		$n-C_4H_9Li$ (2.2 eq), ether, -78° $n-C_4H_9Li$, THF, -70° , 1 hr	(C ₂ H ₅) ₂ SO ₄ , -78° (CH ₃) ₃ SiCl CH ₂ O	A, $R = C_2H_5$ (100) A, $R = Si(CH_3)_3$ (100) $n - C_5H_{11}C \equiv CCHROC_2H_5$	273 273
		ZnI_2 , THF, -70° , 1 hr	CH ₃ CHO CH ₃ COCH ₃ <i>n</i> -C ₃ H ₁₁ C≡CCHO C ₆ H ₃ CHO <i>x</i> -CHOC H CHO	A, R = CH ₂ OH (70) A, R = CH(OH)CH ₃ (90) A, R = C(OH)(CH ₃) ₂ (60) A, R = CH(OH)C \equiv CC ₅ H ₁₁ -n (80) A, R = CH(OH)C ₆ H ₅ (85) A, R = CH(OH)C ₆ H ₅ (85)	30 30 30 30 30 30
	<i>n</i> -C ₃ H ₇ C≡CCH ₂ OC ₄ H ₉ [(CH ₃) ₂ C=CHCH ₂] ₂ O	$R-C_4H_9Li$, THF, 70° , 1 m Znl ₂ , THF, 70° , 1 hr, NaNH ₂ (2 eq), NH ₃ (liq) $t-C_4H_9Li$, THF, -15° $n-C_4H_9Li$, THF, -25°	H ₂ O H ₂ O H ₂ O	$HC \equiv CCH = CH_2C_2H_3 (67) (CH_3)_2C = CHCH(OH)C(CH_3)_2CH = CH_2 (35) (CH_3)_2C = CHCH(OH)C(CH_3)_2CH = CH_2 (67)$	183 210 212
				(CH ₃) ₂ C=CHCH(OH)CH ₂ CH=C(CH ₃) ₂ (14)	
				+ CH ₂ =CHC(CH ₃) ₂ C(CH ₃) ₂ CH ₂ CHO (10)	
				(CH ₃) ₂ C=CHCH ₂ C(CH ₃) ₂ CH ₂ CHO (8)	

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C10	[(CH ₃) ₂ C=CHCH ₂] ₂ O	$n-C_4H_9Li$, THF, -15°	H ₂ O	(CH ₃) ₂ C=CHCH(OH)C(CH ₃) ₂ CH=CH ₂ (-)	210
	(Contd.)				(CH ₃) ₂ C=CHCH ₂ OH (-)	
			n-C4H9Li, 25°	H₂O	$(CH_3)_2C = CHC_5H_{11} - n (-)$ A, $(CH_3)_2C = CHCH_2CH(OH)CH = C(CH_3)_2$	210
					B, $(CH_3)_2C = CHCH(OH)C(CH_3)_2CH = CH_2$	
					C, (CH ₃) ₂ C=CHCH ₂ OH	
138					D, $(CH_3)_2C = CHC_3H_{11}-n$ A: 1, B: 1 (-) Q	
		OC ₄ H ₉ -n	n-C ₃ H ₇ Li (1.3 eq), TMEDA, C ₅ H ₁₂ , reflux, 17 hr	Hydrolysis	(-) C.Hn	203
		CH ₃ OCH(CH ₃)C≡CCH ₂ OC ₄ H ₉ -t	$n-C_4H_9Li$ (2 eq), ether,	H ₂ O	$CH_3CH = C = C = CHOC_4H_9 - t$	170
		C2H3OCH2C≡CCH2OC4H9-t	$t-C_4H_9OK$ (cat), CH ₃ SOCH ₃ ,		$C_2H_5OCH_2CH=C=CHOC_4H_9-t$	495
		$C_2H_3OCH(CH_3)OCH(CH_3)C\equiv CCH_2OCH_3$ $C_2H_3OCH_2C\equiv CCH_2N(C_2H_3)_2$ $CU \rightarrow SC=CCH_2OCH_2OCH_3$	NaNH ₂ (2 eq), NH ₃ (liq), ether $n-C_4H_9Li$ $n-C_4H_9Li$	NH ₄ Cl CH ₃ I CH ₄ I	$C_{2}H_{3}OCH = C = CHCH_{2}OC_{4}H_{9}-t (75)$ $CH_{3}C \equiv CCH = CHOCH_{3} (67)$ $C_{2}H_{3}OCH = C = C(CH_{3})CH_{2}N(C_{2}H_{3})_{2} (80)$ $(CH_{4})SICR = C = CHOC_{4}L_{2}-t (80)$	510 601
		(Ch ₃) ₃ 3iC=CCh ₂ OC ₄ h ₉ -i	n-callgel, caler, 40	(CH.) SiCl	A, R = CH ₃ (>60) A R = Si(CH ₃), (>60)	275
			$n-C_4H_9Li$, ether, -40° , then -5° , 1 hr	H ₂ O	$A_{1} (CH_{3})_{3} SiCE = C C HROC_{4}H_{9} - t$ $+$ $B_{1} (CH_{4})_{2} SiC = C C HROC_{4}H_{9} - t$	2.02
				CH ₃ I (CH ₃) ₃ SiCl	A: 40, B: 60, R = H (-) A: (80), B: (5), R = CH ₃ A: (>60), B: (0), R = Si(CH ₃) ₃	272 272 272
	C		л.С.Н. I і ТНЕ _60° to _ 30°	CH.OH	СН_С=ССН(ОН)С.Н.СН2 (46)	510
	C11	C6H3CH2OCH2C=CCH3	<i>n</i> -C411gLi, 1111, -00 to -30	enjon	C H CH CH (OH) C = CCH, (18)	510
		CH ₂ =C(C ₆ H ₅)CH ₂ OCH=CH ₂	$n-C_4H_9Li$, $n-C_6H_{14}$, ether, TMEDA - 75° 2 hr	H ₂ O	$CH_2 = C(C_6H_5)C_5H_{11} - n$ (89)	202
		$C_6H_5C\equiv CCH_2OC_2H_5$	t-C ₄ H ₉ OK, CH ₃ SOCH ₃ n-C ₄ H ₉ Li (2 eq), ether, -75°, 15 min	- [(CH ₃) ₂ N] ₃ PO, (CH ₃) ₂ SiCl (2 eq)	$C_{6}H_{5}CH=C=CHOC_{2}H_{5} (-)$ $C_{6}H_{5}[(CH_{3})_{3}Si]C=C=C[Si(CH_{3})_{3}]OC_{2}H_{5} (70)$	518 124
		$C_6H_5C\equiv CCH(CH_3)OCH_3$	$n-C_4H_9Li$, ether, -20° , 10 min	$[(CH_3)_2N]_3PO,$ $C_2H_3I, -20^{\circ}$ $CICH_2OCH_2 - 30^{\circ}$	$C_6H_5C(C_2H_5) = C = C(CH_3)OCH_3 (85)$ $CH_5OCH_5C(C_2H_3) = C = C(CH_3)OCH_3 (-)$	274 274
		C ₆ H ₅ CH(CH ₃)OCH ₂ CH=CH ₂	CH ₃ Li, THF, ether	(CH ₃) ₃ SiCl CH ₃ OH	$(CH_3)_3SiC(C_6H_3)=C=C(CH_3)OCH_3$ (-) $C_6H_5CH(CH_3)OCH_2CH=CH_2$ (42) +	274 209
					A, $C_6H_5C(OH)(CH_3)CH_2CH=CH_2$	
					B, $CH_2 = CHCH(OH)C_6H_4C_2H_5-o$	
н		$C_H,CH_OCH(CH_i)CH=CH_i$	n-C.H.Li, THF80°	Н,О	C, $C_6H_5CH(CH_3)CH(OH)CH=CH_2$ A: 3, B: 16, C: 1 (-) C_6H_5CH(OH)CH_5CH=CHCH_1 (-)	212
39		C.H.CH.OCH.CH=CHCH.	CH.Li. THF. ether	снуон	trans C,H,CH(OH)CH(CH,)CH=CH,	209
		C H CH OCH CH=CHCH.	n-C.H.Li THE -80°	H ₂ O	erythro: 2, threo: 1 (-) C.H.CH(OH)CH(CH_)CH=CH_2 (-)	212
			n-C.H.Li THF - 80°	H ₂ O	threo C.H.CH(OH)CH(CH.)CH=CH.	212
		trans	n-C-H-Li THF - 80°	-	erythro: 1, threo: 1 (-) C.H.CH(OH)CD(CH)CH=CH, (-)	211
		trans	<i>h</i> -C₄HgLi, IIII, −60			211
		C ₆ H ₃ CH ₂ O	CH ₃ Li (2 eq), THF, room temperature, 24 hr	H ₂ O	$C_6H_5CH(OH) \rightarrow (75)$	488
			n-C.H.Li n-C H	H-0		488
		c6n3cn20cn2	room temperature, 96 hr	1120	H, C ₆ H ₅ CH(OH)CH ₂ −√	-00
					$C, C_6H_5CH(OH)CH_2CH_2CH=CH_2$	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs:
C ₁₁ (Contd.)	C ₆ H ₅ CH ₂ OCH ₂	CH ₃ Li (2 eq), THF, room temperature, 24 hr	H ₂ O	A, C ₆ H ₃ CH(OH)CH ₂ -	488
	C ₆ H ₅ CH ₂ OCH(CH ₃)C ₂ H ₅	n-C4H9Li, THF, -70° to -20°	H2O	$ \begin{array}{c} + \\ B, C_6H_3CH(OH)CH_2CH_2CH=CH_2 \\ A: 94, B: 6 (-) \\ A, C_6H_3CH(OH)CH(CH_3)C_2H_5 \end{array} $	199
				B, C ₆ H ₃ CH ₂ OH	
				с, с₂н₅сн(сн₃)С₀н₄сно- <i>р</i>	
				− D, C₂H₃CH(CH₃)C6H₄CHO- <i>o</i>	
		<i>n</i> -C ₄ H ₉ Li, THF, -40°	H ₂ O	$E, C_{6}H_{3}COCH(CH_{3})C_{2}H_{5}$ A: 70, B: 20, C: 5, D + E: 5 (-) C_{6}H_{5}COCD(CH_{3})C_{2}H_{5} (after oxidation) (0.29 D) (-)) 198
	C ₆ H ₅ CH ₂ OC ₄ H ₆ -t	t-C₄H₂Li, TMEDA, THF-ether, 26:1, -74°	H ₂ O, 25°	$C_{6}H_{3}CH_{2}OCD(CH_{3})C_{2}H_{3}$ (0.3 D) (-) $C_{6}H_{5}CH(OH)C_{4}H_{9}-t$ (45)	174
		30 min		C ₆ H ₃ CH ₂ OH (4)	
				C ₆ H ₅ CHO (7)	
			D ₂ O	polymers (14) $C_6H_5CHDOC_4H_9-t$ (0.1 D) (-)	174
	~	CH ₃ Li (5 eq), THF, 25°, 48 hr	NH₄CI	$C_6H_3CH(OH)C_4H_9-t$ (5)	487
	C≡CCH2OC2H3	KNH ₂ (2 eq), NH ₃ (liq)	H ₂ O	CHC≡CH ⁽⁹¹⁾	183
	C ₆ H ₃ CH(CH ₃)OSi(CH ₃) ₃	t-C₄H9Li, THF-n-C₅H12, 1:1, −30°, 13 hr	CH₃CO₂H	A, C ₆ H ₅ C(OH)(CH ₃)Si(CH ₃) ₃ + B, C ₆ H ₅ CH(OH)CH ₃ +	
		LDA, THF, <i>n</i> -C ₆ H ₁₄ , 25°, 12 br	CH ₃ CO ₂ H	C, C ₆ H ₅ CH(CH ₃)OSi(CH ₃) ₃ A: 29, B: 56, C: 5 (75) A: 2, B: 4, C: 94 (-)	128 128
	$CH_3C \equiv CC(CH_3)_2OTHP$ n-C_5H ₁₁ (CH_3)C=C=CHOC_2H_5	KNH_2 (3 eq), NH_3 (liq) $n-C_4H_9Li$ (1 eq), ether, 0°	H ₂ O (CH ₃) ₃ SiCl	$HC \equiv CCH = C(CH_3)_2$ (85) $n \cdot C_5 H_{11}(CH_3)C = C = CROC_2 H_5$ $A, R = Si(CH_3)_3$ (100)	183 273
	C ₂ H ₅ OCH(CH ₃)C≡CCH ₂ OC ₄ H ₉ -t	$t-C_4H_9OK$ (cat), CH ₃ SOCH ₃ ,	CH3I —	A, R = CH ₃ (100) C ₂ H ₅ OCH(CH ₃)CH=C=CHOC ₄ H ₉ -t (70)	273 275
	CH ₃ OCH(C ₂ H ₅)C≡CCH ₂ OC ₄ H ₉ -t	$n-C_4H_9Li$ (2 eq), ether,	H ₂ O	$C_2H_3CH=C=C=CHOC_4H_9-t$	170
	C ₂ H ₅ OCH ₂ C≡CCH(CH ₃)OC ₄ H ₉ -t	$t-C_4H_9OK$ (cat), CH ₃ SOCH ₃ ,		$C_2H_3OCH=C=CHCH(CH_3)OC_4H_9-t$ (70)	275
	(CH ₃) ₃ SiC≡CCH ₂ OTHP	$n-C_4H_9Li$, THF, -70° , 1 hr,	C ₆ H ₅ CHO	$(CH_3)_3SiC \equiv CCH[CH(OH)(C_6H_5)]OTHP$ (55)	30
	$C_2H_5OCH(CH_3)OC(CH_3)_2C\equiv CCH_2OCH_3$ <i>n</i> - $C_8H_{17}OCH_2CH=CH_2$	$2n_2$, $1Hr$, -10° , $1hr$ NaNH ₂ (2 eq), NH ₃ (liq), ether $n-C_4H_9Li$, $n-C_6H_{14}$, 25° to 35° , 85 min	NH₄CI H₂O	$(CH_3)_2C=C=C=CHOCH_3$ (64) A, n-C ₈ H ₁₇ OH	510 354
				B, n-C ₈ H ₁₇ OCH=CHCH ₃	
	(CH ₃) ₃ SiC≡CCH(CH ₃)OC ₄ H ₉ -t	$n-C_4H_9Li$, ether	CH ₃ I	A: 77, B: 23 (-) $(CH_3)_3SiC(CH_3)=C=C(CH_3)OC_4H_9-t$ (25) $I(CH_4)_SiC(CH_3)=C=C(CH_4)OC_4H_9-t$ (25)	272
	$(CH_3)_3SiC(CH_3)=C=CHOC_4H_9-t$	$n-C_4H_9Li$, ether, -40° , then -10° , 1 hr	CH ₃ I	$\begin{array}{l} (CH_{3})_{3}SI_{2}C = C = C(CH_{3})OC_{4}H_{9}-t (23)\\ (CH_{3})_{3}SIC(CH_{3}) = C = CROC_{4}H_{9}-t \\ A, R = H (75)\\ A, R = CH_{3} (75)\\ A = Si(CH_{3}) (75)\\ \end{array}$	272, 275 272 272
C ₁₂	C ₆ H ₅ C≡CCH ₂ OCH ₂ C≡CH	<i>t</i> -C₄H ₉ OK, <i>t</i> -C₄H ₉ OH, 12 hr	-	(17)	342
	C ₆ H ₃ C≡CCH ₂ OCH ₂ CH=CH ₂	t-C₄H9OK, t-C₄H9OH, 55°, 22 hr			342
				O (28)	

No. of C Atom	is Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C ₁₂ (Contd	$CH_2 = C = C(OCH_3)C(C_6H_5)CH_2$	t-C ₄ H ₉ OK, CH ₃ SOCH ₃ , - 30°, then 20°	-	CH ₃ O C ₆ H ₅ (51)	562
	$C_{6}H_{5}C \equiv CCH(CH_{3})OC_{2}H_{5}$ $C_{6}H_{5}CH_{2}OC(CH_{3})_{2}CH = CH_{2}$	t-C₄H₂OK, CH₃SOCH₃ n-C₄H₂Li, THF,	H ₂ O	$C_6H_5CH=C=C(CH_3)OC_2H_3$ (-) A, $C_6H_5CH(OH)C(CH_3)_2CH=CH_2$	509
1	$C_6H_3CH_2OCH(CH_3)CH=CHCH_3$ trans $C_6H_3CH_2OCH_2CH=C(CH_3)_2$	25° −20° n-C₄H₂Li, THF, 0° n-C₄H₂Li, THF,	H ₂ O H ₂ O	B, $C_6H_5CH(OH)CH_2CH=C(CH_3)_2$ A: 23, B: 77 (-) A: 17, B: 83 (-) C_6H_5CH(OH)CH(CH_3)CH=CHCH_3 cis: 17 trans: 83 (-) A, C_6H_5CH(OH)C(CH_3)_2CH=CH_2	210 210 211
2	$CH_{3}C \equiv CC(CH_{3})(CH = CH_{2})OTHP$ $CH_{2}OCH = CH_{2}$	- 80° - 80°, then - 25° - 80°, then 23° - 25° 25° - 10° KNH ₂ (3 eq), NH ₃ (liq), <i>n</i> -C ₄ H ₉ Li, C ₆ H ₁₄ , ether, TMEDA, 5°, 25°, 16 hr	H2O H2O	+ + + + + + + + + + + + + + + + + + +	212 212 212 210 210 183 202
	$CH_{3}C \equiv CCH(C_{3}H_{7}-n)OTHP$ $CH_{3}C \equiv CC(CH_{3})(C_{2}H_{3})OTHP$ $(CH_{3})_{3}SiC \equiv CCH_{2}OCH_{2}C \equiv CSi(CH_{3})_{3}$ $CH_{3}OCH(C_{3}H_{7}-i)C \equiv CCH_{2}OC_{4}H_{9}-i$	KNH ₂ (3 eq), NH ₃ (liq) KNH ₂ (3 eq), NH ₃ (liq) $n-C_4H_9Li$, THF, TMEDA, -80° $t-C_4H_9OK$ (cat), CH ₃ SOCH ₃ , 50° , 1 hr $n-C_4H_9Li$ (2 eq), ether, -40° to -50° , 35 min	H ₂ O H ₂ O H ₂ O -	$HC \equiv CCH = CHC_{3}H_{7}-n (78)$ $HC \equiv CCH = C(CH_{3})(C_{2}H_{5}) (87)$ $(CH_{3})_{3}SiC \equiv CCH(OH)C[Si(CH_{3})_{3}] = C = CH_{2} (52)$ $CH_{3}OCH(C_{3}H_{7}-t)CH = C = CHOC_{4}H_{9}-t (76)$ $i\cdot C_{3}H_{7}CH = C = C = CHOC_{4}H_{9}-t (76)$	183 183 440 495 170
	C,H,OCH(C,H,)C≡CCH,OC₄H₀-ı	<i>t</i> -C₄H₄OK (cat), CH₃SOCH ₁ ,	[(CH ₃) ₂ N] ₃ PO, CH ₃ I, 0°, then reflux 2 hr	$i-C_3H_7CH=C=C=C(CH_3)OC_4H_9-t$ (72) $C_2H_4OCH(C_2H_4)CH=C=CHOC_4H_9-t$ (75)	170 495
C13	$n-C_{4}H_{9}OCH_{2}C \equiv CCH_{2}OC_{4}H_{9}-n$ $C_{2}H_{3}OCH(CH_{3})OC(CH_{3})(C_{2}H_{3})C \equiv CCH_{2}OCH_{3}$ $(C_{6}H_{5})_{2}CO$	50° , 1 hr NaNH ₂ (2 eq), NH ₃ (liq) NaNH ₂ (2 eq), NH ₃ (liq), ether (C ₆ H ₃) ₃ SiK, ether, room temperature	H2O NH4CI C6H3CH2CI	$HC \equiv CCH = CHOC_{4}H_{9} - n (78) \\ (C_{2}H_{5})(CH_{3})C = C = C = CHOCH_{3} (60) \\ (C_{6}H_{5})_{2}C(CH_{2}C_{6}H_{5})OSi(C_{6}H_{5})_{3} (16)$	183 510 568
			(CH ₃) ₃ SiCl CO ₂ , H ₃ O ⁺ CH ₂ O, H ⁺	$(C_6H_5)_2C[Si(CH_3)_3]OSi(C_6H_5)_3$ (25) $(C_6H_5)_2C(OH)CO_2H$ (8) $(C_6H_5)_2C(OH)CH_2OH$ (-)	568 568 568
143	$\langle \langle \rangle \rangle$	n-C ₄ H ₉ Li (excess), THF, 0°, then room temperature,	H ₂ O	(61)	201
	C ₆ H ₅ OCH ₂ C ₆ H ₅	48 nr n-C ₄ H ₉ Li (2.5 eq), THF, room temperature, 48 hr	H ₂ O	$HO C_6H_5CH(OH)C_6H_5 $ (98)	201
		$n-C_4H_9Li$, ether, (CH ₃) ₂ C=CH ₂		$C_{6}H_{5}OLi$ (81) (CH ₃) ₂ C=CH ₂ (-)	
		CH3Li, CH3OCH2CH2OCH3-THF,	H₂O	$C_6H_5 \xrightarrow{(-)} C_6H_5 CH(OH)C_6H_5 (80)$	565 201
		1:1 $n-C_4H_9Li$, ether- C_6H_{10} , 8:15, 25°, 10 hr	×	C ₆ H ₃ OH (68) +	565
				C_6H_s (2)	
				$C_{6}H_{5}CH = CHC_{6}H_{5}$ trans (9)	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₃ (Contd.)	C ₆ H ₅ OCH ₂ C ₆ H ₅	$n-C_4H_9Li_1, (CH_3)_2C=CH_2, -70^\circ$	-	C ₆ H ₅ OH (81)	565
()				(0.5)	
				+ C ₆ H ₃ CH ₂ CH(C ₆ H ₃)C ₄ H ₉ -n (3)	
				$C_6H_5C_5H_{11}-n$ (0.7)	
		NaNH2, NH3 (liq), 2 hr	-	(66)	213
	\sim N° CH ₂ OCH ₂ CH=CH ₂ n-C ₄ H ₉ C≡CCH ₂ OC ₆ H ₅	NaNH ₂ (2 eq), NH ₃ (liq)	H₂O	$ \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	183
	$C_6H_3C \equiv CCH(OCH_3)C_3H_7 - i$	$n-C_4H_9Li$, ether, -20° , 10 min	H ₂ O	$C_6H_5C(R) = C = C(OCH_3)C_3H_7 \cdot i$ A, R = H (-)	274
			D_2O CICH ₂ CH ₂ N(C ₂ H ₅) ₂ , [(CH ₃) ₂ N] ₃ PO, -20°, then reflux 1 then reflux 1 hr	A, R = D (-) A, R = CH ₂ CH ₂ N(C ₂ H ₅) ₂ (-)	274 274
	CH OCH C=CCH.	<i>n</i> -C ₄ H ₉ Li, TMEDA, ether, -75°, 2 hr, then -30°, 2 hr	H ₂ O	CH(OH)C≡CCH ₃ (63)	567
	OTHP C≡CCH ₃	KNH2 (3 eq), NH3 (liq)	H₂O	CHC≡CH ⁽⁹⁴⁾	183
	4	n-C₄H9Li, THF, −20°	H2O	$\downarrow \qquad \qquad$	214
	CH2OCH2CH=CHCH3	n-C₄H₀Li, ether, TMEDA, -80° to -25°, 165 min	H2O	cis or trans A, CH_2OH + B, CH_2OH + CH(OH)CH(CH_3)CH=CH_2 + C, CH_2 A: 12, B: 59, C: 29 (70)	567

No. of C Atoms	s Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) $\binom{6}{0}$	Refs.
C ₁₃	C ₆ H ₅ CH ₂ OSi(C ₂ H ₅) ₃	t-C4H9Li (1 eq), n-C5H12,	H,	A, $C_6H_3CH(OH)Si(C_2H_3)_3$	
(Contd.))	room temperature, 44 nr		$\mathbf{B}, \mathbf{C}_{6}\mathbf{H}_{5}\mathbf{C}\mathbf{H}_{2}\mathbf{O}\mathbf{S}\mathbf{i}(\mathbf{C}_{2}\mathbf{H}_{5})_{3}$	
		$t-C_4H_9Li$ (5 eq), $n-C_5H_{12}$,	н.	C, $C_6H_5CH_2OH$ 31 A: 75, B: 18, C: 7 (-) A: (96), B(0.8), C(3)	31 31
		room temperature, 144 nr t-C ₄ H ₉ Li, n -C ₅ H ₁₂ n-C ₄ H ₉ Li, TMEDA, n -C ₆ H ₁₄ ,	(CH ₃) ₃ SiCl, then H ⁺ CH ₃ CO ₂ H	A: (67) A: 65, B: 13, C: 22 (-)	31 128
	C ₆ H ₅ CH ₂ OSi(CH ₃) ₂ C ₄ H ₉ -t	25°, 0.13 hr LDA, THF, n-C ₆ H ₁₄ , 25°, 12 hr	CH ₃ CO ₂ H	A, C ₆ H ₅ CH(OH)Si(CH ₃) ₂ C ₄ H ₉ - <i>t</i> +	
		t-C4H9Li, THF-n-C5H12,	CH ₃ CO ₂ H	B, $C_6H_5CH_2OSi(CH_3)_2C_4H_9$ - <i>t</i> A: 54, B: 46 () A: 70, B: 30 ()	128 128
		$t-C_4H_9Li, C_5H_{12}, TMEDA,$	CH ₃ CO ₂ H	A: 64, B: 36 (-)	128
		25° , 7 hr $n-C_4H_9Li$, TMEDA, $n-C_6H_{14}$,	CH ₃ CO ₂ H	A: 85, B: 15 (-)	128
	n-C ₅ H ₁₁ C≡CCH ₂ OTHP	25° , 2 hr $n-C_4H_9Li$, THF, -25° , 2.5 hr	CH ₃ OH, H ₂ O	A, n-C ₅ H ₁₁ CH=C=CHOTHP	381
		n-C₄H9Li, THF, −70°, 1 hr	$C_6H_3CHO, -70^\circ,$ then H ₂ O, H ⁺	B, $n-C_5H_{11}C \equiv CCH_2OTHP$ A: 7, B: 3 (-) $n-C_5H_{11}C \equiv CCH[CH(OH)C_6H_5]OTHP$ erythro: 4, threo: 1 (-) $C_5H_{11}-n$	30
		n-C₄H₀Li, THF, −70°, 1 hr, ZnI₂, THF, −70°, 1 hr	C₀H₃CHO	(-) THPO O C ₆ H ₅ <i>n</i> -C ₅ H ₁₁ C≡CCHROTHP A, R = CH(OH)C ₆ H ₅ (60)	30
	C ₆ H ₃ CH[Si(CH ₃) ₃]OSi(CH ₃) ₃	t-C₄H₀Li, n-C₅H₁₂, TMEDA, 25°, 0.67 hr	СН₃СОСН₃ СН₂О л-С₃Н₁₁С≡ССНО СН₃СО₂Н	A, R = C(OH)(CH ₃) ₂ (52) A, R = CH ₂ OH (63) A, R = CH(OH)C \equiv CC ₃ H ₁₁ -n (80) A, C ₆ H ₅ CH[Si(CH ₃) ₃]OSi(CH ₃) ₃ + B, C ₆ H ₅ CH[Si(CH ₃) ₃]OH	30 30 30
		t-C ₄ H ₉ Li, THF-n-C ₅ H ₁₂ , 1:1, -23°, 0.5 hr	CH ₃ CO ₂ H	A: 96, B: 4 (-) A: 90, B: 10 (-)	128 128
	$C_2H_5OCH(C_3H_7-i)C\equiv CCH_2OC_4H_9-t$	<i>t</i> -C ₄ H ₉ OK (cat), CH ₃ SOCH ₃ , 50°, 1 hr		$C_2H_5OCH(C_3H_7-i)CH=C=CHOC_4H_9-t$ (70)	495
	$C_2H_3OCH(CH_3)OC(C_2H_3)_2C\equiv CCH_2OCH_3$ t-C_4H_9OCH(CH_3)C\equiv CCH_2N(C_2H_3)_2	NaNH2 (2 eq), NH3 (liq) n-C4H9Li	NH₄CI H₂O (CH₃)₃SiCl	$(C_2H_5)_2C=C=C=CHOCH_3$ (62) t-C_4H_9OC(CH_3)=C=CRCH_2N(C_2H_5)_2 A, R = H (85) A, R = Si(CH_3)_3 (75)	510 601 601
	<i>n</i> -C ₅ H ₁₁ [(CH ₃) ₃ Si]C=C=CHOC ₂ H ₅	n-C ₄ H ₉ Li (1 eq), ether, 0°	CH ₃ I CH ₃ COCH ₃ C ₂ H ₃ Br	A, $R = CH_3$ (85) A, $R = C(OH)(CH_3)_2$ (70) $n - C_5H_{11}[(CH_3)_3Si]C=C=CROC_2H_5$ A, $R = C_2H_5$ (71) A, $R = C_4H_5$ (70)	601 601 273
		n-C4H9Li (1 eq), ether-[(CH3)2N]3PO, 1:1, 0°	(CH ₃) ₂ SO ₄ (CH ₃) ₃ SiCl C ₂ H ₅ Br	A, $R = C_{2115}^{-1}$ (100) A, $R = Si(CH_3)_3$ (78) A, $R = C_2H_5$ (61)	273 273 273 273
	[(CH ₃) ₃ Si]₂C=C=CHOC₄H ₉ -t	n-C ₄ H ₉ Li, ether, -40°, then 10°, 1 hr	H_2O CH_3I CH_3OCH_2CI $(CH_3)_3SiCI$ $i-C_3H_7CHO$ $(CH_3)_2CO$ $(C_2H_5)_2CO$ O	$[(CH_3)_3Si]_2C=C=CROC_4H_9-t$ A, R = H (60) A, R = CH_3 (70-85) A, R = CH_2OCH_3 (70) A, R = Si(CH_3)_3 (70-85) A, R = CH(OH)C_3H_7-i (70) A, R = C(OH)(CH_3)_2 (70-85) A, R = C(OH)(C_2H_5)_2 (72) OH A. R = (-)	272 272, 275 272 272, 275 272 272, 275 272 272 272
C14	OCH,	C_6H_5Li (1 eq), ether	H ₂ O	(24) HO CH ₃	93

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
	C ₁₄ (Contd.)		C ₆ H ₅ Li (1 eq), ether, room temperature, 24 hr	H ₂ O	(96) OCH.	93
		OCH3		C ₆ H ₅ COC ₆ H ₅	(47) $CH_{3O} C(OH)(C_6H_5)_2$	93
148		$\langle \cdot \rangle$	C ₆ H ₅ Li, ether	H ₂ O	(77)	604
~		C ₆ H ₅ CH ₂ OCH ₂ C ₆ H ₅	CH ₃ Li (5 eq), THF-CH ₃ OCH ₂ CH ₂ OCH ₃ , 1:1, room temperature, 48 hr	NH₄CI	A, C ₆ H ₅ CH ₂ CH(OH)C ₆ H ₅ B, C ₆ H ₅ CH(OH)CH ₃	487
			CH ₃ Li (5 eq), THF, room temperature, 48 hr C ₆ H ₃ Li (1 eq), ether,	H ₂ O	A: 75, B: 25 (-) A: 82, B: 18 (-) A, C ₆ H ₃ CH(OH)CH ₂ C ₆ H ₅	487 173
			room temperature, 40 hr		B, $C_6H_3CH_2OCH_2C_6H_5$ + C, polymers	
			n-C ₄ H ₉ Li (2.6 eq), ether, room temperature, 40 hr	сн3он	A + B (74), C (15) $C_6H_5CH(OH)CH_2C_6H_5$ (44) C.H.CH(OH)CH_C.H. (61-67)	208
			KNH2 (2 eq, 1913, eller	_	$C_6H_5CH_3$ (16) + + + + + + + + + + + + + + + + + + +	208
					C ₆ H ₅ CONH ₂ (14)	
			KNH ₂ (1 eq)		$C_6H_5CH(OH)CH_2C_6H_5$ (51)	208
		(C ₆ H ₅) ₂ CHOCH ₃	C ₆ H ₅ Li (1 eq), ether, 5 hr	H ₂ O	C_6H_5CHO (22) + C_6H_5CHO (28) $(C_6H_5)_2C(OH)CH_3$ (23) +	93
		OCH2C6H,	CH3Li (excess), THF-ether,	H ₂ O	$(C_6H_5)_2$ CHOCH ₃ (13) CH=CHCH(OH)C ₆ H ₅ (-)	189
			1:1, room temperature	H-O		213
		N CH2OCH2CH=CHCH3	NaNH2, NH3 (liq), 2 hr	-	(78)	213
149					$ \overset{N}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\to} \overset{C}{$	
		CH-OCH(CH-)CH=CH-	n-C₄H9Li, THF, −25°, 2 hr	H ₂ O	(90)	213
			NaNH2, NH3 (liq), 2 hr	i=:	CH(OH)CH ₂ CH=CHCH ₃ (74)	213
					$\bigcup_{N} + (22)$	
			n-C₄H₂Li (4 eq), THF, −25°	H ₂ O	(90) CH(OH)CH ₂ CH=CHCH ₃	213

No. of C Ator	ns Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₄ (Conto	d.)	CH3Li (excess), THF-ether, 1:1, room temperature	H ₂ O	A,	189
150				$\mathbf{B}_{\mathbf{c}} = \begin{pmatrix} \mathbf{C}_{\mathbf{b}} \mathbf{H}_{\mathbf{s}} \\ \mathbf{C}_{\mathbf{b}} \mathbf{H}_{\mathbf{s}} \end{pmatrix}$	
	$C_6H_5C \equiv CCH(C_3H_7-n)OC_2H_5$ $C_6H_5C \equiv CCH(C_3H_7-i)OC_2H_5$	$t-C_4H_9OK$, CH_3SOCH_3 $t-C_4H_9OK$ (cat), CH_3SOCH_3 ,		A: 1, B: 1 (52) $C_6H_5CH=C=C(OC_2H_5)C_3H_7-n$ (-) $C_6H_5CH=C=C(OC_2H_5)C_3H_7-i$ (67)	509 494
	$(n-C_4H_9C\equiv CCH_2)_2O$ $n-C_4H_9C\equiv CCH_2OCH_2C\equiv COC_4H_9-n$	KNH ₂ (2 eq), NH ₃ (liq) NaNH ₂ , NH ₃ (liq)	H ₂ O H ₂ O	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	183 183
	$CH_3OCH(C_5H_{11}-n)C\equiv CCH_2OC_4H_9-t$	$n-C_4H_9Li$ (2 eq), ether, -40° to -50° 35 min	H ₂ O	$n-C_3H_{11}CH=C=C=CHOC_4H_9-t$	170
	i-C ₃ H ₇ OCH(C ₃ H ₇ -i)C≡CCH ₂ OC ₄ H ₉ -t	1-C ₄ H ₉ OK (cat), CH ₃ SOCH ₃ , 50°, 1 hr	-	$i-C_3H_7OCH(C_3H_7-i)CH=C=CHOC_4H_9-t$ (70)	495
C15		C_6H_5Li (1 eq), ether	H ₂ O	(13)	603
	CH₂=C(CH₃)C≡CCH₂OCH₂C≡CC ₆ H₅	t-C₄H9OK, t-C₄H9OH, room temperature, overnight	-	(55) $CH_3C=CH_2$ (11)	342
	(C ₆ H ₅) ₂ CHOC ₂ H ₅	n-C ₃ H ₇ Na	H ₂ O	$C_{6}H_{4}$ ($C_{6}H_{5}$) ₂ CHOH (24) + ($C_{6}H_{5}$) ₂ C(OH)C ₂ H ₅ (44) + C ₂ H ₄ (24) + C H (24)	175, 176
	$C_6H_5C\equiv CCH(OC_2H_5)CH_2C_3H_7-i$	I-C ₄ H ₉ OK (cat), CH ₃ SOCH ₃ . room temperature, 30 min	-	$C_{3}H_{8}^{(110)}$ $C_{6}H_{5}CH=C=C(OC_{2}H_{5})CH_{2}C_{3}H_{7}-i$ (75)	494
151	$n-C_4H_9C\equiv CCH(C_6H_5)OC_2H_5$	r-C4H9OK, CH3SOCH3		$n-C_4H_9CH=C=C(OC_2H_5)C_6H_5$ (-)	509
	LAor	n -C ₄ H ₉ Li, THF, -20°	H ₂ O	$+ CH(OH)C_4H_9-n (12)$ $+ CH_2OH (35-40)$	214
		e.		+ (9-11) + (9-10)	

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₅ (Contd.)	$CH_{3}C \equiv CC(C_{3}H_{7}-n)_{2}OTHP$ $n-C_{12}H_{23}OCH_{2}CH = CH_{2}$	KNH_2 (3 eq), NH_3 (liq) $n-C_4H_9Li$, $n-C_6H_{14}$, -33 , 6 hr	H ₂ O D ₂ O	$HC \equiv CCH = C(C_3H_7-n)_2 (88)$ $n - C_{12}H_{25}OCH = CHCH_3$ cis (88)	183 353, 354
		^t -C₄H ₉ OCH[Si(CH ₃) ₃]C≡CCH ₂ N(C ₂ H ₅) ₂	retlux, 2 hr n-C₄H₂Li	H₂O	A, $n-C_{12}H_{25}OH$ + B, $n-C_{12}H_{25}CH_{2}CH=CH_{2}$ A: 48, B: 52 (-) $t-C_{4}H_{9}OC[Si(CH_{3})_{3}]=C=CRCH_{2}N(C_{2}H_{5})_{2}$ A, R = H (70)	353, 354 601
152	C ₁₆	p-O ₂ NC ₆ H₄OCH ₂ C≡CCH ₂ OC ₆ H₄NO ₂ -p	r-C₄H9OK, 120°, 15 hr	(CH ₃) ₃ SiCl CH ₃ COCH ₃ -	A, R = Si(CH ₃) ₃ (75) A, R = C(OH)(CH ₃) ₂ (70) HC=CCH=CHOC ₆ H ₄ NO ₂ -p (-)	601 601 449
		OCH ₂ CH=CH ₂	C_6H_5Li (1.1 eq), ether, -10°	H₂O	HO CH ₂ CH=CH ₂ (80)	603
			n-C ₄ H ₉ ONa, n-C ₄ H ₉ OH, 120°, 2 hr t-C H OK 120° 15 hr	-	$HOCH_{2}CH=CH_{2}$	362
		C ₆ H ₃ OCH ₂ CH=CHCH ₂ OC ₆ H ₃ C ₆ H ₃ OCH ₂ CH=CHCH ₂ OC ₆ H ₃ cis	$r-C_4H_9OK$, 120°, 15 hr	2	$CH_2 = CHCH = CHOC_6H_5$ (-)	449
		C ₆ H ₅ OCH ₂ CH=CHCH ₂ OC ₆ H ₅ trans	t-C ₄ H ₉ OK, 120°, 15 hr		CH ₂ =CHCH=CHOC ₆ H ₅ (-)	449
		(C ₆ H ₃) ₂ CHOGe(CH ₃) ₃	r-C₄H ₉ Li, THF-C₅H ₁₂ , 1:1, −20°, 2 hr	CH ₃ CO ₂ H CH ₃ I	A, (C ₆ H ₅) ₂ C(OH)Ge(CH ₃) ₃ + B, (C ₆ H ₅) ₂ CHOH A: 70, B: 30 (-) A, (C ₆ H ₅) ₂ C(OCH ₃)Ge(CH ₃) ₃	128
					B, $(C_6H_5)_2$ CHOCH ₃ A: 73, B: 27 (-)	
		(C ₆ H ₅) ₂ CHOSi(CH ₃) ₃	t-C₄H₂Li, THF-C₃H₁₂, 1:1, -20°, 2 hr	CH ₃ CO ₂ H	A, $(C_6H_5)_2$ CHOSi $(CH_3)_3$	128
			t-C ₄ H ₉ Li, THF-C ₅ H ₁₂ , 1:1, 20°, 2 hr	СН3І	B, $(C_6H_5)_2$ CHOH A: 90, B: 10 () A, $(C_6H_5)_2$ C(CH ₃)OSi(CH ₃) ₃ + B, $(C_6H_5)_2$ CHOCH ₃ +	128
		$C_6H_5C\equiv CCH(OC_2H_5)C_5H_{11}-n$	ſ-Ċ₄H₀OK, CH₃SOCH₃	-	C, $(C_6H_5)_2$ CHOSi(CH ₃) ₃ A: 75, B: 12, C: 13 (-) C ₆ H ₅ CH=C=C(OC ₂ H ₅)C ₅ H ₁₁ -n (-)	509
	C17	OCH₂C≡CCH₃	CH3Li, THF, -70°	H ₂ O	$HO C(CH_3) = C = CH_2 $ (95)	209
1		OCH ₂ CH=CHCH ₃	NaNH2, NH3 (liq), 2 hr	-	$HO CH(CH_3)CH=CH_2 $ (84.5)	213
153						
			<i>n</i> -C ₄ H ₉ ONa, <i>n</i> -C ₄ H ₉ OH, 120° 2 hr		HO CH ₂ CH=CHCH ₃ (-)	362
		OCH(CH ₃)CH=CH ₂	NaNH2, NH3 (liq), 2 hr		HO CH ₂ CH=CHCH ₃ (70)	213
					(10-20)	

No of 0 Ato	o. C oms Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C17 (Con		<i>n</i> -C ₄ H ₉ ONa, <i>n</i> -C ₄ H ₉ OH, 120°, 2 hr	-		362
	$C_6H_5C \equiv CCH(OC_2H_5)C_6H_5$	t-C ₄ H ₉ OK, CH ₃ SOCH ₃	Ē	$C_6H_3CH=C=C(OC_2H_3)C_6H_3$ (-)	518
	C6H3CH2OC6H4(C4H9-1)-m	$h - C_4 H_9 Li, THF,$ room temperature, 48 hr	H ₂ O	$C_6H_3CH(OH)C_6H_4(C_4H_9-t)-m$ (-)	201
		then 25°, 24 hr	H ₂ O	C-H-C-H	201
				+ t-C.HC.HOH-n (5)	
154	$C_6H_5CH_2OC_6H_4(C_4H_9-t)-p$	n-C ₄ H ₉ Li, THF, room temperature 48 hr	H ₂ O	$C_6H_5CH(OH)C_6H_4(C_4H_9-t)-p$ (-)	201
		C_6H_5Li , THF, 0°, then 25°, 24 hr	H₂O	$C_{6}H_{5}CH(OH)C_{6}H_{4}(C_{4}H_{9}-t)-p$ (95)	201
		24 11		C ₆ H ₅ C ₆ H ₅	
	C ₆ H ₅ CH ₂ OC(CH ₃)(C ₂ H ₅)C ₆ H ₅	n-C4H9Li, THF	H ₂ O	$t-C_4H_9C_6H_4OH-p$ (5) A, C_6H_5CH(OH)C(CH_3)(C_2H_3)C_6H_5	
				B, C ₆ H ₅ C ₄ H ₉ -sec	
				C, C ₆ H₃CHO	
				D, CH ₃ CH= $C(CH_3)C_6H_5$	
				E, C ₆ H₃CH₂OH	
		room temperature, 12 hr - 60°, 14 hr - 30°, 4 hr		F, C ₆ H ₅ CH(OH)C ₄ H ₉ -n A: 48, B: 0.5, C: 5.5, D: 2.5, E: 2.5, F: 0.5 (-) A: (34), E: (4), F: (0.7) A: 42, B: 0.5, C: 2.5, D: 1.5, E: 1.6, F: 0.6 (-)	200 200 200
		t-C4H9OK, CH3SOCH3, 300 hr	H2O	$C_{6}H_{3}CH(OH)C(CH_{3})(C_{2}H_{5})C_{6}H_{5}$ (10) $C_{6}H_{3}CH_{2}OH^{+}(1.7)$ $C_{6}H_{5}CO_{2}H^{-}(-)$	200
	C ₆ H ₅ CH ₂ O	n-C₄H9Li, THF	H ₂ O	A, C ₆ H ₃ CH(OH)CH ₂ \uparrow \uparrow B, C ₆ H ₃ CH(OH) \uparrow \uparrow \uparrow \uparrow	210
				C, + D, C ₆ H ₅ CH ₂ OH A: 45 B: 5 C: 25 D: 25 (-)	
н	OCH ₂ C ₆ H ₅			CH(OH)C6H5	
55		CH ₃ Li (2 eq), THF, 25°, 48 hr	NH₄CI	(54)	487
C ₁₈	OCH(CH ₃)C≡CCH ₃	CH ₃ Li, THF, -70°	H ₂ O	$HO C(CH_3) = C = CHCH_3 $ $C_6H_5 $ (95)	209
	C ₆ H ₅ C≡CCH ₂ OCH ₂ CH=CHC ₆ H ₅ trans	<i>t</i> -C₄H9OK, <i>t</i> -C₄H9OH, 55°, 16 hr	-	(52) +	342
				(30)	

No. of C Ato	ms Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C19	OC ₆ H ₄ NO ₂ -p	C ₆ H ₅ Li, 100°, 10 hr	-	$\bigcup_{\text{HO } C_6\text{H}_4\text{NO}_2\text{-}p} (-)$	603
	OC.H.	C ₆ H ₅ Li, 100°, 4 hr	-	(67)	
	(C ₆ H ₅) ₂ CHOC ₆ H ₃	n-C4H9Li, THF, 40°, 50 hr	H ₂ O	(C ₆ H ₅) ₃ COH (85)	605
56		n-C4H9Li, CH3OCH2CH2OCH3, 40°, 10 days	H ₂ O	C ₆ H ₅ OH (-) (C ₆ H ₅) ₃ COH (84)	605
		C ₆ H ₅ Li, ether, room temperature, 8 days	H ₂ O	(C ₆ H ₃) ₃ COH (80) +	605
		C ₆ H ₃ Li, THF, 40°, 80 hr C ₆ H ₃ Li, CH ₃ OCH ₂ CH ₂ OCH ₃ , 40°,	H ₂ O H ₂ O	C ₆ H ₅ OH (89) (C ₆ H ₅) ₃ COH (78) (C ₆ H ₅) ₃ COH (80)	605 605
		n-C ₄ H ₉ Li, petroleum ether, 70° 60 hr	H ₂ O	C ₆ H ₅ OH (56) +	605
		KNH ₂ , ether, NH ₃ , 100°, 14 hr	-	(C ₆ H ₅) ₂ CHCH(C ₆ H ₅) ₂ (38) (C ₆ H ₅) ₂ CHOC ₆ H ₅ (87)	197
		NK, piperidine, 100°, 50 hr	-	(C ₆ H ₅) ₂ CHOC ₆ H ₅ (97)	197
		NaNH2, ether, NH3, 100°,		(C ₆ H ₅) ₂ CHOC ₆ H ₅ (72)	197
		14 hr LiNH ₂ , ether, NH ₃ , 100°,		(C ₆ H ₅) ₂ CHOC ₆ H ₅ (76)	197
C ₂₀	OCH ₂ C ₆ H ₄ Br-p	14 hr n-C4H9ONa, n-C4H9OH, 120°, 2.5 hr	-	$ \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	362
	OCH ₂ C ₆ H ₄ I-p	n-C ₄ H ₉ ONa, n-C ₄ H ₉ OH, 120°, 2.5 hr	-	$HO CH_2C_6H_4I-p$ + (45)	362
157	OCH ₂ C ₆ H ₄ NO ₂ -p	<i>n</i> -C ₄ H ₉ ONa, <i>n</i> -C ₄ H ₉ OH, 75°, 3 hr	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0	362
	OCH ₂ C ₆ H ₅	<i>n</i> -C ₄ H ₉ ONa, <i>n</i> -C ₄ H ₉ OH, 120°, 2.5 hr	:	(70)	362
		KNH ₂ , NH ₃ (liq), ether, -30° to 10°, 1 hr	-	(30) +	362
				$ \begin{array}{c} & (-) \\ & HO \\ & CH_2C_6H_5 \end{array} \end{array} $	

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₂₀ (Contd.)	OCH.C.H.	C_6H_5Li (1.1 eq), ether, -10°	H ₂ O	(98) HO_CH_C.H.	603
		(C ₆ H ₅) ₂ CHOC ₆ H ₄ CH ₃ -p	KNH_2 , ether, NH_3 , 100°, 17 hr	1 . =0	$(C_6H_5)_2C(OH)C_6H_4CH_{3^-p}$ (77)	197
15	C ₂₁	OCH(CH ₃)C ₆ H ₅	<i>n</i> -C ₄ H ₉ ONa, <i>n</i> -C ₄ H ₉ OH, 110°, 2 hr	-	HO CH(CH ₃)C ₆ H ₅ (80)	362
8			C ₆ H ₅ Li, ether, 15°, 4 min	H ₂ O	HO CH(CH ₃)C ₆ H ₅ (60)	362
	C22	OCH ₂ CH=CHC ₆ H ₅	C ₆ H ₅ Li, ether, 15°, 1 min	H ₂ O	(90)HO CH ₂ CH=CHC ₆ H ₅	362
			n-C ₄ H ₉ ONa, n-C ₄ H ₉ OH, 120°, 120°, 20 hr	_	HO CH-CH=CHC.H. (70)	362
	C ₂₃	$CH_2C_6H_5$	CH ₃ Li, THF, - 70° then 0°, 23 hr	H ₂ O	(0.16 D) (11)	177
	C ₂₅	C ₆ H ₃ CHDOGe(C ₆ H ₅) ₃ C ₆ H ₃ CH ₂ OSi(C ₆ H ₅) ₃	<i>l</i> -C ₄ H ₉ Li (eq), THF- <i>n</i> -C ₅ H ₁₂ , 1:1, -50°, 3 min <i>t</i> -C ₄ H ₉ Li, THF-C ₅ H ₁₂ , 1:1, -40°, 18 hr	СН₃СО₂Н СН₃СО₂Н	C ₆ H ₃ CD(OH)Ge(C ₆ H ₅) ₃ S(-): 53, $R(+)$: 47 (-) A, C ₆ H ₅ CH(OH)Si(C ₆ H ₅) ₃ + B, C ₆ H ₅ CH ₂ OH	493 128
	C ₂₆		C ₆ H ₅ Li (1 eq), ether	H ₂ O	$ \begin{array}{c} + \\ C, C_6H_3CH_2OSi(C_6H_5)_3 \\ A: 61, B: 7, C: 6 (50) \\ \hline \\ OH \\ (80) \end{array} $	603
		[(C ₆ H ₅) ₂ CH] ₂ O	$\mathrm{CH}_3\mathrm{Li}$ (5 eq), THF, 25°, 48 hr	NH₄CI	$(C_{6}H_{5})_{2}CHCH(C_{6}H_{5})_{2} (3)$ + $(C_{6}H_{5})_{2}C=C(C_{6}H_{5})_{2} (-)$	487
159					$C_{6}H_{5}CH_{2}C_{6}H_{5}^{+}$ (-) ($C_{6}H_{5})_{2}C(OH)CH_{3}$ (12) ($C_{6}H_{5})_{2}C(OH)H_{6}$ (32)	
			$n-C_4H_9Li$, 48 hr KNH ₂ (2 eq), ether, room temperature, then reflux 3.5 hr	CO ₂ CO ₂	$\begin{bmatrix} [o-HO_2CC_6H_4CH(C_6H_5)]_2O & (-) \\ (C_6H_5)_2CHCOOH & (60-68) \\ C_6H_5COC_6H_5 & (15-20) \\ + \end{bmatrix}$	384 208
	C27	C ₆ H ₅ COCH(C ₆ H ₅)OCH(C ₆ H ₅) ₂	KOH, N, C ₂ H ₅ OH, reflux,		$C_6H_5CONH_2$ (-) $C_6H_5COC(OH)(C_6H_5)CH(C_6H_5)_2$ (5)	444
	C ₁₀	[C ₆ H ₄ CH=CHCH(C ₆ H ₄)] ₂ O	l hr C2H3ONa, C2H6OH.	-	[C_4H_4CH_3CH=C(C_4H_4)].0 (-)	578
			reflux 2 hr		ನ ಸಂಪರ್ಧ ಕಿಂಗ್ ಕ್ರೀಕ್ರೆ ಕಿಂಗ್	10041

TABLE XI. H	IEMITHIOKETALS
-------------	-----------------------

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C,	√ ^S _{C6H5}	$(C_2H_5)_2$ NLi, ether, 20°, 15 min	_	$C_6H_5CON(C_2H_5)_2$ ()	31
		LICA, ether, 20°, 15 min	-	$C_6H_5CON(C_3H_7-i)$ (-)	31
C ₁₃	⊥s C ₆ H ₅	$(C_2H_5)_2$ NLi, ether	-	(CH ₃) ₂ C=C(CH ₃) ₂ (-)	31
C15	-O S -C ₆ H ₅	$(C_2H_5)_2$ NLi, ether, 20°, 12 hr	-	(45)	31
	S-O-C ₆ H ₅	LICA, ether, 20°, 15 min	-	(29)	31
C ₂₁	C ₆ H ₅ C ₆ H ₅ C ₆ H ₅	LICA, ether, 20°, 2 d	-	C ₆ H ₅ CH=CHC ₆ H ₅ cis (-)	31

TABLE XII. IMINODITHIOCARBONATE DIESTERS

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₀	S NCH ₂ C ₆ H ₅	t-C₄H₃OK, THF, –70°	C ₆ H ₅ CH ₂ Br	A, \sqrt{S} NCH(C ₆ H ₅)CH ₂ C ₆ H ₅	24
				$B, \bigvee_{CH_2C_6H_5}^{+} N = CHC_6H_5$	
	C ₆ H ₅ CH ₂ N=C(SCH ₃) ₂	$t-C_4H_9OK$, THF, -70°	C ₂ H ₅ I	A, $C_6H_5CHRN = C(SCH_3)_2$	
				B, $C_6H_5CH=NC(SCH_3)_2R$ A: 40, B: 60, R = C_2H_5 (95)	24
		LDA, THF, -78°	C ₆ H ₅ CH ₂ Br (CH ₃) ₃ SiCl	A: 90, B: 10, $R = CH_2C_6H_5$ (81) A: 15, B: 85, $R = Si(CH_3)_3$ (80)	24 24

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C.	CH2=CHCH2NC	n-C₄H9Li, THF,	C ₆ H ₃ CHO, 65°	$CH_2 = CHCH = CHC_6H_3$ (41)	245,317
			-70	C ₆ H ₅ COC ₆ H ₅ , -70°	$CH_2 = CHCH = C(C_6H_5)_2 (38)$ $CH_2 = CH_2 = CN_2 = C(OH)(C_6H_5)_2$	245
				C ₆ H ₅ COC ₆ H ₅ , excess	$C_{0}H_{5} - O $ $C_{0}H_{5}$ $C_{0}H_{5}$ (4.6)	246
				\bigcirc°	CH ₂ =CH (13)	246
162				CHO, reflux, 16 hr	(48)	245
				reflux, 16 hr		245
					B, A: 2, B: 1 (25)	
			NaH, THF, reflux, 2 hr	C ₆ H ₃ CHO, room temperature, 16 hr	C ₆ H ₅ CH=CHCH=CH ₂ (53.5)	243
	C.	CH ₂ NC	NaH, (CH ₃) ₂ NCHO	C2H3OCO2C2H3	$\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	152
		(CH ₃)C=CHCH ₂ NC	<i>n</i> -C₄H₂Li, THF, - 70° to - 60°	CO ₂ C ₂ H ₅	× (50)	256
	С,	CH ₂ NC	(C ₂ H ₃) ₃ N, 52°			146
		CH ₂ NC	<i>t</i> -C₄H ₉ OK, THF, -70° to -60°	CH3COCH3, then CH3OH		
				i-C3H7CHO, then CH3OH	A, R = R' = CH ₃ (87) A, R = H, R' = C ₃ H ₇ - <i>i</i> (75)	566 566
				, then CH ₃ OH	A, $R = R' = (CH_2)_5$ (72)	566
				C ₆ H ₃ CHO, then CH ₃ OH	A, R = H, R' = C ₆ H ₅ (65)	566
			t-C₄H₂OK (2 eq), THF, -60°	C ₆ H ₃ CHO, room temperature, then reflux, 45 min, then H ⁺		146
163				СН3СНО СН3СОСН3	A, R = H, R' = C_6H_3 (52) A, R = H, R' = CH_3 (51) A, R = R' = CH_3 (-)	146 146
				<pre></pre>	$A, R = R' = (CH_1)_{s}$ (92)	146
				C6H3COC6H3	$\mathbf{A}, \mathbf{R} = \mathbf{R}' = \mathbf{C}_{\mathbf{a}} \mathbf{H}_{5} (75)$	146
			t-C₄H₅OK (1 eq), THF - 60°	$n-C_3H_7I$, warmed to room temperature		146
				<i>n</i> -C ₇ H ₁₅ Br	A, $R = C_3 H_7 \cdot n$ (60) A, $R = C_7 H_{15} \cdot n$ (53)	146
		CH ₂ NC	t-C₄H₀OK, THF, -70° to -65°	CH ₃ CHO, then CH ₃ OH	N R R	566
				CH3COCH3, then CH3OH	A, R = H, R' = CH ₃ (-) A, R = R' = CH ₃ (65)	566

TABLE XIII. ISONITRILES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	CH2NC		~ ⁰		566
C ₇ (Contd.)		$t-C_4H_9OK$, THF, -70° to -65°	then CH ₃ OH	$A, R = R' = (CH_2)_4$ (73)	
				C(NHCHO)=CRR'	
		t-C₄H ₉ OK (2 eq), THF, <10°	СН3СНО	\bigcirc	
			C ₆ H ₃ CHO, room temperature, then H ⁺ CH ₃ COCH ₃	A, R = H, R' = CH ₃ (73) A, R = H, R' = C ₆ H ₅ (90) A, R = R' = CH ₃ (94)	146 146 146
			() po	A, $R = R' = (CH_2)_4$ (90)	146
			CH3COC4H9-r	$\vec{A}, \vec{R} = CH_3, \vec{R}' = C_4H_9 - t$ (95) $\vec{A}, \vec{R} = \vec{R}' = C_2H_2$ (>90)	146 146
C ₈	p-CIC ₆ H ₄ CH ₂ NC	NaH,	C ₂ H ₃ OCO ₂ C ₂ H ₅	p-CIC ₆ H ₄ CH(NC)CO ₂ C ₂ H ₃ (62)	152
	C H CH NC	CH LI THE	CH O then CH OH	$N \subset C_6H_s$	
	C6H5CH2NC	-70° to -65°	enjo, nea enjon	$A_{R} = R' = H (-)$	566
			C_6H_4 CHO, then CH ₃ OH C_6H_5 COCH ₃ , then CH ₃ OH p-CF ₃ C ₆ H ₄ CHO, then CH ₃ OH	A, R = H, R' = C_6H_5 (64) A, R = CH ₃ , R' = C_6H_5 (46) A, R = H, R' = $C_6H_4CF_{3^*P}$ (62)	566 566 566
		n-C₄H₂Li, THF, -70° to -60°	HCO_2CH_3 , -50° to room temperature	N C ₆ H ₃ (76)	256
			i-C ₃ H ₇ CO ₂ CH ₃	$\bigvee_{C_3H_{7}-i}^{C_6H_3} (44)$	256
		ι-C₄H₀OK, THF. -70° to -60°	p-CH ₃ OC ₆ H ₄ CHO, then CH ₃ OH	$\bigvee_{C_6H_4OCH_3-p}^{C_6H_5} (48)$	566
		<i>n</i> -C₄H₀Li, THF, -70°	с⁰н³снснсосі ∧	C ₆ H ₃ CHCHC ₆ H ₃ (-)	317
			CS2, then CH3I		.e.
			C ₆ H ₅ NCS	A, $R = SCH_3$ (-) A, $R = NHC_6H_5$ (24)	317 317
		-70°	CH ₃ NCS	$\mathbf{A}, \mathbf{R} = \mathbf{N}(\mathbf{CH}_3)\mathbf{CSNCH}_3 (11)$	317
					317
			S, then CH ₃ OH	H C ₆ H, (89)	317
			() ^o	C ₆ H ₃ (26)	246
			C6H3CHO, then heat	C ₆ H ₅ CH=CHC ₆ H ₅ (-)	317
			C ₆ H ₅ COCH ₃ , 65°	$C_6H_5CH=C(CH_3)C_6H_3$ (44)	21
			$C_6H_5COC_6H_5$, -70°	$C_6H_5CH = C(C_6H_5)_2 (74)$	21
			C ₆ H ₃ COC ₆ H ₅ , excess	C_6H_5 N $C(OH)(C_6H_5)_2$ (16)	246
		NaH, (CH ₃) ₂ NCHO	CO_2 , then HCl $CICO_2C_2H_3$ $CH_3OCO_2CH_3$	C_6H_5' $C_8H_5CH(NH_3)CO_2H$ (40) $C_8H_5CH(NC)CO_2C_2H_5$ (35) $C_6H_5CH(CO_2CH_3)NC$ (70)	152 152 152

TABLE XIII. ISONITRILES (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₈ (Contd.)	C ₆ H ₃ CH ₂ NC	Cu₂O (2 eq), C ₆ H ₆ , 80°, 1 hr	i-C3H7CHO (2 eq)	$ \begin{array}{c} $	559
		Cu₂O (2 eq), C ₆ H ₆ , 80°, 3 hr	CH ₂ =C(CH ₃)CN (1 eq)	C ₆ H ₅ C ₆ H ₅ (70) 1:1 mixture of isomers	559
			CH ₂ =C(CH ₃)CO ₂ CH ₃ (1 eq)	CH ₃ CO ₂ CH ₃ (94) 1:1 mixture of isomers	559
			CH2=CHCO2CH3 (2 eq)	$C_{4}H_{5}$ \downarrow $CO_{2}CH_{3}$ + + + + + + + +	559
				$C_{6}H_{3}$ (75) $CH_{3}O_{3}C$ $CH_{2}CH_{2}CO_{2}CH_{3}$ (75)	
			CH ₃ COCH ₃ (2 eq)	N R'	
			C ₆ H ₃ COCH ₃ (2 eq)	C_4H_5 A, R = R' = CH ₃ (60) A, R = CH ₃ , R' = C ₆ H ₃ (75) mixture of isomers	559 559
		Cu ₂ O (2 eq), C ₆ H ₆ , 80°, 15 hr	(2 eq)	A, $R = R' = (CH_2)_4$ (82)	559
	CNCH ₂ CO ₂ C ₂ H,	n-C₄H₀Li, THF, −55°, 20 min	CH3COCI	$ \underbrace{ \begin{array}{c} \sum_{i=1}^{N} \sum_{j=1}^{CO_2C_2H_5} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	154a
C,	C ₆ H ₃ CH(CH ₃)NC	<i>n</i> -C₄H₂Li, THF, -70°	Ċ ₆ H ₃ COCH ₃ , then CH ₃ OH	$ \begin{array}{c} $	317, 566
		Cu ₂ O (2 eq), C ₆ H ₆ , 80°, 3 hi	CH ₂ =C(CH ₃)CN (1 eq)	(85) N-CG-GH- 1:1 mixture of isomers	559
			CH ₂ =C(CH ₃)CO ₂ CH ₃ (1 eq)	$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ 0.85:1 \text{ mixture of isomers} \end{array} $ (95)	559
		Cu ₂ O (2 eq), C ₆ H ₆ , 80°, 3 hr	CH2=CHCO2CH3 (2 eq)	CH ₃ O ₂ C CH ₃ C ₆ H ₅ (2-3) CH ₃ CH ₃ C ₆ H ₅ (2-3) CH ₃ O ₂ C + CH ₂ CH ₂ CO ₂ CH ₃	559
		Cu ₂ O (2 cq), C ₆ H ₆ , 80°, 3 hr	CH3CH=CHCO2CH3 (1 eq)	$ \begin{array}{c} & (80) \\ & CH_3 \\ & CO_2CH_3 \\ &$	559

TABLE XIII. ISONITRILES (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₉ (Contd.)	C ₆ H ₃ CH(CH ₃)NC	Cu 2O (2 eq), C ₆ H ₆ , 80°, 3 h	CH3O2CCH=CHCO2CH3 (2 eq) r	$\begin{array}{ccc} CO_{2}CH_{3} & CO_{2}CH_{3} \\ & & \\ & & \\ & & \\ CG_{2}CH_{3} & (22) + \\ & & \\ & & \\ C_{6}H_{5} & C_{6}H_{5} \end{array} \begin{pmatrix} CO_{2}CH_{3} \\ & \\ & \\ & \\ CG_{2}CH_{3} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	559
		Cu ₂ O (2 eq), C ₆ H ₆ , 80°,	CH ₃ COC ₂ H ₅ (2 eq)	$ \begin{array}{c} O \\ C_{3}H_{3} \\ C_{6}H_{3} \end{array} $ (41)	559
	p-CH ₃ C ₆ H ₄ CH ₂ NC	NaH,	C2H3OCO2C2H3	mixture of isomers $p-CH_3C_6H_4CH(NC)CO_2C_2H_5$ (59)	152
	p-CH3OC6H4CH2NC	(CH ₃) ₂ NCHO NaH, (CH ₃) ₂ NCHO	C ₂ H ₅ OCO ₂ C ₂ H ₅	p-CH ₃ OC ₆ H ₃ CH(NC)CO ₂ C ₂ H ₅ (60) C ₆ H ₄ OCH ₃ -p	152
		n-C ₄ H ₉ Li, THF, -70° to -65°	C ₆ H ₃ CHO, then CH ₃ OH	(78)	566
Cio	C ₆ H ₃ CH=CHCH ₂ NC trans	n-C ₄ H ₉ Li, THF, -70°	C ₆ H ₅ CHO, reflux 16 hr	C ₆ H ₅ CH=CHCH=CHC ₆ H ₅ (53) trans C ₄ H ₅	245
C14	(C ₆ H ₅) ₂ CHNC	n-C₄H₂Li, THF, -70° to -65°	CH ₂ O, then CH ₃ OH	$N \rightarrow C_{6}H_{5} (65)$	566
			, then CH ₃ OH	C_6H_5 C_6H_5 (72)	246, 566
			C_6H_5CHO , then heat	$(C_6H_5)_2C = CHC_6H_5$ (-) C_6H_5 , C_6H_5 C_6H_5	317
			$C_6H_5COC_6H_5$, excess	C(OH)(C ₆ H ₅) ₂ C ₆ H ₅	246
		<i>t</i> -C₄H ₉ OK, THF, -70° to -60°	CH3COCH3, then CH3OH	N CH ₃ (87) O CH ₃	566
	NC	n-C4H9Li, THF, - 70°, 5 min	C ₆ H ₃ CHO, reflux, 16 hr	cis: 1, trans: 2 (30)	245
C16	C NC	<i>n</i> -C₄H9Li, THF, - 70°, 10 min	C ₆ H ₃ CHO, reflux 16 hr	C ₆ H ₃ (36) trans: 97, cis: 3	245
5			CH ₃ CO ₂ CH ₂ CH=C(CH ₃)CHO, reflux		245
с ₁₁ С		n-C₄H₂Li, THF, −70°, 10 min	room temperature, 4 hr		245
			C_6H_5CHO , reflux, 16 hr	C ₆ H ₅ (60)	246

TABLE XIII. ISONITRILES (Continued)

TABLE XIV. KETALS

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₈	CH ₃ C≡CCH(OC ₂ H ₅) ₂	$NaNH_2$ (2 eq),	H ₂ O	$HC \equiv CCH = CHOC_2H_5$ (80)	183
C,	C ₆ H ₅	$t-C_4H_9CH_2Li$, ether		$A, \bigvee_{O}^{O} \bigcup_{C_6H_5}^{COC_6H_5}$	191
C ₁₀	$\int_{C_6H_5}^{O} C_6H_5$	$n-C_4H_9Li, C_6H_{14},$ $60^{\circ}, 30 \text{ min}$ $n-C_6H_{13}Li, C_6H_{14},$ $60^{\circ}, 30 \text{ min}$ $n-C_4H_9Li, ether,$ $-5^{\circ}, 10 \text{ min}$ $C_6H_5Li (1.25 eq),$ ether, room temperature $n-C_4H_9Li, THF$ $n-C_4H_9Li (2.2 eq),$ THF, 20°, 2 hr $n-C_4H_9Li, C_6H_{12},$ $60^{\circ}, 30 \text{ min}$	 NH₄CI H₂O 	$ \begin{array}{c} + \\ B, C_{6}H_{5}COCH_{2}C_{4}H_{9}-t \\ A: 8, B: 92 (-) \\ C_{6}H_{5}COC_{4}H_{9}-n (87) \\ C_{6}H_{5}COC_{6}H_{13}-n (66) \\ C_{6}H_{5}CHO + C_{6}H_{5}COC_{4}H_{9}-n (-) \\ C_{2}H_{4} (-) + C_{6}H_{5}COC_{6}H_{5} (-) \\ + \\ (C_{6}H_{5})_{3}COH (-) \\ C_{6}H_{5}CH(OH)C_{4}H_{9}-n (17) \\ + \\ n - C_{5}H_{11}C(OH)(C_{6}H_{5})(CH_{2})_{2}CH_{2}OH (30) \\ C_{6}H_{5}C(OH)(C_{4}H_{9}-n) (CH_{2})_{2}CH_{2}OH (-) \\ + \\ C_{6}H_{5}CH(OH)C_{4}H_{9}-n (-) \\ p - CH_{3}C_{6}H_{4}COC_{4}H_{9}-n (80) \\ \end{array} $	345 345 589 601 191 192 345
C ₁₁	$C_{6}H_{4}OCH_{3}-p$ $CH_{3}C \equiv CC(OC_{2}H_{5})_{3}$ $C_{2}H_{5}OCH_{2}C \equiv CCH(OC_{2}H_{5})_{2}$ $C_{6}H_{5}CH(OC_{2}H_{5})_{2}$	<i>n</i> -C ₄ H ₉ Li, C ₆ H ₁₂ . 60°, 30 min KNH ₂ (2 eq), NH ₃ (liq) <i>n</i> -C ₄ H ₉ Li (2 eq), ether, -40° to -50° , 35 min <i>n</i> -C ₄ H ₉ Li, THF		$p-CH_3OC_6H_4COC_4H_9-n$ (78) $HC\equiv CCH=C(OC_2H_5)_2$ (75) $C_2H_5OCH=C=C=CHOC_2H_5$ (60) $C_6H_5CH(OH)C_4H_9-n$ (50)	345 170, 183 170, 183 191
	C₂H₅OCH(CH₃)C≡CCH(OC₂H₅)₂	n-C4H9Li (2 eq), THF n-C4H9Li (2 eq),	 H2O	$C_{6}H_{5}CHO (20) + C_{6}H_{5}COC_{2}H_{5} (15) + C_{2}H_{5}C(OH)(C_{6}H_{5})C_{5}H_{11}-n (5) C_{6}H_{5}CH(OH)C_{4}H_{9}-n + C_{6}H_{5}CHO () + C_{6}H_{5}COC_{2}H_{5} () + C_{6}H_{5}C(OH)(C_{2}H_{5})C_{4}H_{9}-n () C_{2}H_{5}OC(CH_{3})=C=C=CHOC_{2}H_{5}$	192 170
C ₁₂	(C ₂ H ₅ O) ₂ CHC≡CCH ₂ OC ₄ H ₉ -t	-40° to -50° , 35 min $t-C_4H_9OK$ (cat), CH ₃ SOCH ₃ ,	~	$^{+}_{CH_{3}CH=C=C=C(OC_{2}H_{5})_{2}} (83, \text{ total})$ $(C_{2}H_{5}O)_{2}CHCH=C=CHOC_{4}H_{9}-t (70)$	34
C ₁₃	C ₆ H ₅	room temperature n-C ₄ H ₉ Li, petroleum ether, 20°, 38 hr	_	$C_6H_4(OH)_2-1,2$ (-) + $C_6H_5CH=CHC_3H_7-n$ (-) cis and trans	106
	C ₆ H ₅ C≡CCH(OC ₂ H ₅) ₂	<i>t</i> -C ₄ H ₉ OK (cat), CH ₃ SOCH ₃ , room temperature	_	+ $C_{6}H_{5}CH(C_{4}H_{9}-n)OC_{6}H_{4}OH-o$ (30) $C_{6}H_{5}CH=C=C(OC_{2}H_{5})_{2}$ (-)	34

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₃ (Contd.)	$(C_2H_5O)_2CHC\equiv CCH(CH_3)OC_4H_9-t$	$t-C_4H_9OK$ (cat), CH_3SOCH_3,	i — i	$(C_2H_5O)_2CHCH=C=C(CH_3)OC_4H_9-t (70)$	34
C ₁₄	$C_6H_5OCH_2C\equiv CCH(OC_2H_5)_2$	$t-C_4H_9OK$ (cat), CH ₃ SOCH ₃ ,	-	$C_6H_5OCH=C=CHCH(OC_2H_5)_2$ (20)	34
C15	(C ₆ H ₅) ₂ C(OCH ₃) ₂	K (2 eq)	CO ₂ , H ⁺	(C ₆ H ₅) ₂ C(OCH ₃)CO ₂ H (-)	93
	O O C ₆ H ₅	<i>t</i> -C ₄ H ₉ CH ₂ Li, ether, 20°, 15 hr	-	A, O COC_6H_5 C_6H_5	192
	<u></u>			B, $C_6H_5COCH_2C_4H_9-t$ A: 65, B: 35 (-)	
	C ₆ H ₅	$n-C_4H_9Li (2 eq), C_6H_{14}, 20^\circ, 12 hr$) — :	$(_{cis})$ $(-)$	192
	0 0 0 0	n-C.H.Li	-	(75)	191
		petroleum ether		$\frac{1}{C_6H_5COC_4H_9-n} (-)$	
		<i>n</i> -C ₄ H ₉ Li (2 eq), petroleum ether, 20°, 14 hr		(73)	192
		<i>n</i> -C₄H₂Li (2 eq), THF, 0°, 15 min	-	A, +	
				$\mathbf{B}, \mathbf{C}_{4}\mathbf{H}_{9} \cdot \mathbf{n}$	
		0°, 1 hr		A: 82, B: 18 A: 62, B: 38	192 192
		C ₆ H ₅ Li, THF, reflux, 2 hr	<u>79</u>	(59)	192
				$C_6H_5COC_6H_5$ (-) + C_6H_5 (-)	
		$t-C_4H_9CH_2Li$, ether	~	A. O COC_6H_5 COC_6H_5	192
				B, $C_6H_5COCH_2C_4H_{9}$ - <i>t</i> A: 30, B: 70 (-)	

TABLE XIV. KETALS (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₂₁	C_6H_5 C_6H_5 C_6H_5 (\pm)	n-C₄H9Li, THF	_	$C_6H_5CH=CHC_6H_5$ (9) trans +	191
	meso, mixture of diastereomers		-	$C_{6}H_{3}CH_{2}COC_{6}H_{5} (66)$ + $C_{6}H_{5}CH(OH)C_{4}H_{9}-n (64)$ $C_{6}H_{5}CH_{2}COC_{6}H_{5} (67)$ + $C_{6}H_{5}CH(OH)C_{4}H_{9}-n (70)$	191
	C_6H_5 C_6H_5 C_6H_5	<i>n</i> -C ₄ H ₉ Li (2.1 eq), THF, 20°, 2 hr	H ₂ O	C ₆ H ₅ CH ₂ COC ₆ H ₅ (—) + C ₆ H ₅ CH(OH)C ₄ H ₉ -n (—)	192
	C ₆ H ₅	<i>n</i> -C₄H ₉ Li (2.1 eq), THF, 20°, 1.5 hr	H2O	$C_{6}H_{5}CH = CHC_{6}H_{5} (9)$ $trans$ $C_{6}H_{5}CH_{2}COC_{6}H_{5} (-)$ $C_{6}H_{5}CH(OH)C_{4}H_{9}-n (-)$ $+$ $C_{6}H_{5} (-)$ $C_{6}H_{5} (-)$ $C_{6}H_{5} (-)$	192

TABLE XIV. KETALS (Continued)

TABLE XV. NITRO DERIVATIVES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C ₃	CH ₂ =CHCH ₂ NO ₂	$n-C_4H_9Li$, THF, [(CH ₃) ₂ N] ₃ PO,	D ₂ O	A, $CH_2 = CHCHRCH_2NO_2$	619
		-30 10 -90		$A \cdot 52 B \cdot 48 B = D (80)$	610
			CHI	A: $J2$, B: 40 , $R = D$ (00) A: 40 , B: 60 , B = CH (71)	610
				A. 40, D. 00, $\mathbf{R} = C\mathbf{H}_3$ (71) A. 12 D. 99 D - C H = (75)	610
			<i>i</i> -C ₃ H ₇ I	A: 3, B: 97, $R = C_3 H_7 - i$ (73) A: 3, B: 97, $R = C_3 H_7 - i$ (53)	619
		∧ B	Br	A: 20, B: 80, $R = $ (68)	619
			$C_6H_5CH_2Br$ A: 20,	A: 20, B: 80, $R = C_c H_c C H_a$ (68)	619
				A: 52, B: 48, $R = t-C_{4}H_{0}CH(OH)$ (65)	619
			n-C.H.,CHO	A: 56, B: 44, R = $n-C_{*}H_{*}$, CH(OH) (76)	619
			C ₄ H ₄ CHO	A: 30, B: 70, $R = C_{\epsilon}H_{\epsilon}CH(OH)$ (74)	619
			~0	∧ ,OH	
			()	A: 50, B: 50, R = (82)	619
			C6H5COC6H5	A: 50, B: 50, R = $(C_6H_5)_2C(OH)$ (42)	619

TABLE XV. NITRO DERIVATIVES (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₃ (Contd.)	CH ₂ =CHCH ₂ NO ₂	$n-C_4H_9Li$, THF, [(CH ₃) ₂ N] ₃ PO, -80° to -90°	\checkmark	A: 0, B: 100, R = (40)	619
			O ^o	A: 0, B: 100, R = (48)	619
				A: 0, B: 100, R = (68)	619
			C ₆ H ₅ COCH=CHC ₆ H ₅	A: 0, B: 100, $R = C_6 H_5 COCH_2 CH(C_6 H_5)$ (-)	619
C ₇	C ₆ H ₅ CH ₂ NO ₂	LDA, THF-[(CH ₃) ₂ N] ₃ PO, 5:1, -78°, 1 hr	C ₂ H ₅ I	$C_6H_5CH(R)NO_2$ A, R = C_2H_5 (80)	29a
			$n-C_5H_{11}Br$	A, $R = C_5 H_{11} - n$ (80)	29a
			$C_6H_5CH_2Br$ Br(CH ₂) ₅ Br	A, $R = C_6H_5CH_2$ (75) A, $R = (CH_2)_5Br$ (40)	29a 29a

TABLE XVI. NITROSOAMINES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C4	CH ₃ N(NO)CH ₂ CH=CH ₂	LDA, THF, -78°	CH ₃ I, -30°, 8 hr	$CH_3N(NO)CH(R)CH=CH_2$ A, R = CH ₃ (87)	620
			\sim°	OH	
			, - 30°, 2 hr	A, R = (92)	620
			C ₆ H ₄ CHO, -78°, 35 min	$A, R = C_6 H_5 CH(OH) (90)$	620
			$C_6H_5COC_6H_5, -78^\circ$	$A, R = C_6 H_5 C(OH) C_6 H_5 (80)$	620
			-78°, 12 hr	$CH_3N(NO)CH = CHCH_2C(OH)(C_6H_5)_2$ (76)	620
C ₇	CH ₂ =CHCH ₂ N(NO)C ₄ H ₉ -t	LDA, THF,	C ₆ H ₅ CHO	A, CH ₂ =CHCH[CH(OH)(C ₆ H ₄)]N(NO)C ₄ H ₉ - i	
	• • • • • •	2 2		+	
				B, C ₆ H ₅ CH(OH)CH ₂ CH=CHN(NO)C ₄ H ₉ -t	
		- 80°, 5 min		A: 55, B: 45 (-)	4, 575
		-80° to -30° , 2 hr		A: 45, B: 55 (-)	4, 575
		-80° to $+25^{\circ}$, 12 hr		A: 5, B: 95 (-)	4, 575
		LDA, THF, -80°	C ₆ H ₅ COC ₆ H ₅	$t-C_4H_9N(NO)CH=CHCH_2C(OH)(C_6H_5)_2$ (-)	10
		LDA, THF, - 78°,	$CH_{3}I, -30^{\circ}, 8 hr$	$t-C_4H_9N(NO)CH(R)CH=CH_2$	620
		3 min		$A, R = CH_3 (80)$	
			n-C ₈ H ₁₇ I	A, $R = n - C_8 H_{17}$ (75)	620
			i-C ₃ H ₇ I	$\mathbf{A}, \mathbf{R} = i \cdot \mathbf{C}_3 \mathbf{H}_7 (40)$	620
			CH ₂ =CHCH ₂ Br	$A, R = CH_2 = CHCH_2 (85)$	620
			$C_2H_5CHO, -30^\circ, 2 hr$	A, $t-C_4H_9N(NO)CH(R)CH=CH_2$	
				B. $t-C_{A}H_{0}N(NO)CH=CHCH_{2}R$	
				A: 98, B: 2, $R = C_2 H_4 CH(OH)$ (95)	620
			CH,COCH,	A: 45, B: 55, $R = (CH_3)_2 C(OH)$ (95)	620
No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
----------------------------	--	---	--	---	------------
C ₇ (Contd.)	CH2=CHCH2N(NO)C4H9-1	LDA, THF, -78°, 3 min	⊖_0	A: 40, B: 60, R = (85)	620
			C6H5CHO C6H5COC6H5	A: 45, B: 55, $R = C_6H_5CH(OH)$ (>95) A: 2, B: 98, $R = (C_6H_5)_2C(OH)$ (>95)	620 620
			O ^o ,	A, 0, B: 100, R = (76)	620
			room temperature C ₆ H ₅ CHO, room temperature	A: 5, B: 95, $R = C_6 H_5 CH(OH)$ (78)	620
C ₈	C ₆ H ₅ CH ₂ N(NO)CH ₃	LDA, THF, -78°,	СН3СНО	C ₆ H ₅ CH ₂ N(NO)[CH ₂ CH(OH)CH ₃]	23
		10 mm		$C_6H_5CH[CH(OH)CH_3]N(NO)CH_3$ (100)	
C ₁₁	CH ₄ O CH ₄ O NNO	LDA, THF, -80°	C ₆ H ₅ CH ₂ Br	CH ₃ O NNO	10, 62
C		IDA THE 700	<i>m,p</i> -(CH ₃ O) ₂ C ₆ H ₃ CHO	R A, R = CH ₂ C ₆ H ₅ (60) A, R = CH(OH)C ₆ H ₃ (OCH ₃) ₂ -m,p (60) C H CH N(N)C(WR)C H	10, 62
C14	(C6H5CH2)2NNO	$4 \min$	$CH_{3}i$, -78° , 1.5 m, then 0°	$C_{6}H_{5}CH_{2}N(NO)CH(R)C_{6}H_{5}$ A, R = CH ₃ (91) <i>anti</i> : 4, <i>syn</i> : 1	25
			$Br(CH_2)_3Br, -78^\circ,$ 1.5 hr. then 0°	A, $R = (CH_2)_3 Br$ (-) anti: 9, syn: 1	25
			$Br(CH_2)_4Br, -78^\circ,$ 1.5 hr, then 0°	A, $R = (CH_2)_4 Br$ (-) anti: 9, syn: 1	25
			CO ₂ , -78°, 20 min	$A, R = CO_2 H (99)$ anti: 2, svn: 1	25
			C ₆ H ₅ CHO (1 eq), -78°, 1.5 hr, then 0°	A, $R = CH(OH)C_6H_5$ (66) two isomers, anti	25
		CH ₃ Li, THF, -75°, 4 min	C ₆ H ₅ CHO	$A, R = CH(OH)C_6H_5 (90)$	25
		LDA, THF, -80° LDA, THF, -75°, 4 min	$n-C_3H_7I$, -75° , 2.5 hr, then room temperature	$C_{6}H_{5}CH=CHC_{6}H_{5} (-)$ $C_{6}H_{5}CH_{2}N(NO)CH(C_{3}H_{7}-n)C_{6}H_{5}$ <i>anti</i> : 85, <i>syn</i> : 15 (85)	10 25
C ₁₅		LDA, [(CH ₃) ₂ N] ₃ PO	CH3I	(48)	135a
C ₁₆	NNO	CH3Li (1.1 eq), THF, - 78°, 1 min	CH3I, 30 min		
			CO ₂	A, $R = CH_3$ (98) A, $R = CO_2H$ (45)	25 25
			D ₂ O	anti: 1, syn: 2 A, $R = D$ (-)	25
		<i>t</i> -C ₄ H ₉ OK, <i>t</i> -C ₄ H ₉ OD, 27 min		anti: 2, syn: 9 A, $R = D$ (-) H syn axial exchanged faster	408

TABLE XVI. NITROSOAMINES (Continued)

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₇	(C ₂ H ₅ O) ₂ P(O)OCH ₂ CH=CH ₂	n-C₄H9Li, THF,	CH ₃ COCI	$(C_2H_5O)_2P(O)CH(OCOCH_3)CH=CH_2$ (72)	206
		[(CH ₃) ₂ N] ₂ P(O)OCH ₂ CH=CH ₂	-70° n-C ₄ H ₉ Li, THF,	H₂O	$[(CH_3)_2N]_2P(O)CH(OH)CH=CH_2$ (50)	206
			-70° n-C ₄ H ₉ Li, THF,	CH ₃ COCI	A, [(CH ₃) ₂ N] ₂ P(O)CH(OCOCH ₃)CH=CH ₂	206
			-70° n-C ₄ H _o Li (excess),	CH ₁ COCI	$ \begin{array}{c} & + \\ B, [(CH_3)_2N]_2P(O)C(OCOCH_3) = CHCH_3 \\ A: 1, B: 1 (70) \\ [(CH_3)_2N]_2P(O)C(OCOCH_3) = CHCH_3 (-) \end{array} $	206
180			THF, -70° n-C ₄ H ₉ Li (excess), THF, inverse addition, -70°	CH3I	$[(CH_3)_2N]_2P(O)COC_2H_4R$ A, R = CH ₃ (-) not isolated	206
			$n-C_4H_9Li$, THF, -70°	$n-C_3H_7I$ Br(CH ₂) ₃ Br (0.5 eq)	A, $R = C_3H_7$ -n (-) not isolated A, $R = (CH_2)_5COP(O)[N(CH_3)_2]_2$ (-)	206 206
			$n-C_4H_9Li (2 eq),$ THF, $-50^{\circ},$	C ₆ H ₅ CH=CHCOCH ₃	A, R = C(OH)(CH ₃)CH=CHC ₆ H ₅ (-) not isolated	581
			1.5 nr	CH ₂ CHCH ₃	A, $R = CH_2CH(OH)CH_3$ (-) not isolated	581
				CH₂CHC₂H₃	A, $R = CH_2CH(OH)C_2H_5$ (-) not isolated	581
				CH ₂ CHC ₆ H ₅	A, $R = CH_2CH(OH)C_6H_5$ (-) not isolated	581
				\bigcirc	$A, R = \underbrace{OH}_{} ()$	581
				n-C₅H ₁₁ CHO	not isolated A, $R = CH(OH)C_5H_{11}-n$ ()	581
				i-C ₃ H ₇ CHO	not isolated A, $R = CH(OH)C_3H_7-i$ (-)	206, 581
				C ₆ H ₅ CHO	not isolated A, $R = CH(OH)C_6H_5$ (-)	581
				CH ₃ COCH ₃	not isolated A, $R = C(OH)(CH_3)_2$ (-) not isolated	581
					$A, R = \bigcirc OH (-)$ not isolated	581
181				\bigcirc°	$A, R = \bigcup_{i=1}^{OH} (-)$	581
					A, $\mathbf{R} = \bigcup_{\substack{n \in \mathcal{O} \\ \text{obs}} OH}^{N} (-)$	581
				\bigcirc	$A, R = \bigcup_{OH} (-)$	581
				C ₆ H ₅ COC ₆ H ₅	not isolated A, $\mathbf{R} = C(OH)(C_6H_5)_2$ (-)	581
	C ₈	L(CH ₃) ₂ NJ ₂ P(O)OCH ₂ CH=CHCH ₃	<i>n</i> -C ₄ H ₉ Li, THF, -70°	H ₂ O	[(CH ₃) ₂ N] ₂ P(O)CH(OH)CH=CHCH ₃ (50)	206

TABLE XVII. PHOSPHATES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₈ (Contd.)	[(CH ₃) ₂ N] ₂ P(O)OCH ₂ CH=CHCH ₃	$n-C_4H_9Li$, THF, -70°	CH ₃ COCI	A, $[(CH_3)_2N]_2P(O)CH(OCOCH_3)CH=CHCH_3(4)$	8) 206
(comu.)				$B_{1}[(CH_{3})_{2}N]_{2}P(O)C(OCOCH_{3}) = CHC_{2}H_{5} (32)$	
C ₉	(CH ₃ O) ₂ P(O)OCH ₂ C ₆ H ₄ Br-p	$n-C_4H_9Li$ (1 eq), THF. -70°	CH3COCI	$(CH_3O)_2P(O)CH(OCOCH_3)C_6H_4Br-p$ (70)	36
	(CH ₃ O) ₂ P(O)OCH ₂ C ₆ H ₅	$n-C_4H_9Li$ (1 eq), THF, -70°	CH ₃ COCI	$(CH_3O)_2P(O)CH(OCOCH_3)C_6H_5$ (70)	36
C ₁₀	(CH ₃ O) ₂ P(O)OCH ₂ C ₆ H ₄ CH ₃ -p	$n-C_4H_9Li$ (1 eq), THF, -70°	CH ₃ COCI	$(CH_{3}O)_{2}P(O)CH(OCOCH_{3})C_{6}H_{4}CH_{3}-p$ (72)	36
C11	$(C_2H_5O)_2P(O)OCH_2C_6H_4Cl-p$	$n-C_4H_9Li$ (1 eq), THF. -70°	CH ₃ COCI	$(C_2H_5O)_2P(O)CH(OCOCH_3)C_6H_4Cl-p$ (75)	36
	[(CH ₃) ₂ N] ₂ P(O)OCH ₂ C ₆ H ₅	n-C ₄ H ₉ Li (1 eq), THF, -70°	H ₂ O	[(CH ₃) ₂ N] ₂ P(O)CH(OH)C ₆ H ₅ (90)	36
		n-C₄H₂Li (2 eq), THF	CH ₃ COCl CH ₃ I, then H ₂ O	$[(CH_3)_2N]_2P(O)CH(OCOCH_3)C_6H_5$ (90) $C_6H_5COCH_3$ (-)	36 36
C ₁₂	(C ₂ H ₅ O) ₂ P(O)OCH ₂ C ₆ H ₄ OCH ₃ -o	$n-C_4H_9Li$ (1 eq), THF, -70°	H ₂ O	$(C_2H_5O)_2P(O)CH(OH)C_6H_4OCH_3-o$ (70)	36
	$(C_2H_5O)_2P(O)OCH_2C_6H_4OCH_3-p$	$n-C_4H_9Li$ (1 eq), THF, -70°	H ₂ O	$(C_2H_5O)_2P(O)CH(OH)C_6H_4OCH_3-p$ (80)	36
	[(CH ₃) ₂ N] ₂ P(O)OCH ₂ C ₆ H ₄ CH ₃ -p	$n-C_4H_9Li$ (1 eq), THF, -70°	H ₂ O	$[(CH_3)_2N]_2P(O)CH(OH)C_6H_4CH_3-p$ (95)	204
		1999.	CH3COCI	$[(CH_3)_2N]_2P(O)CH(OCOCH_3)C_6H_4CH_3-p (90)$	204
C ₁₄	(C ₂ H ₅ O) ₂ P(O)OCH ₂	n-C4H9Li, THF, -70°	CH3COCI	$(C_2H_3O)_2P(O)$ CH_3CO_2 (75)	206

TABLE XVII. PHOSPHATES (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₈	O ^P N(CH ₃) ₂	<i>n</i> -C₄H ₉ Li, TMEDA, THF, −70°, 30 min	C ₆ H₅CN	$ \begin{array}{c} $	259
² C ₁₀	$\sim P$ $O^{P} N(C_2H_5)_2$	<i>n</i> -C₄H ₉ Li, TMEDA, THF, −75°, 30 min	C ₆ H ₅ COC ₆ H ₅	$O_{\text{N}(C_{2}H_{5})_{2}}^{\text{P}}$ (75)	39
			CH ₃ CO ₂ C ₂ H ₅	O P $COCH_3$ O $N(C_2H_5)_2$ (20 total)	39
				$\bigvee_{\substack{p \\ N(C_2H_5)_2}}^{+} (20, 101al)$	

TABLE XVIII. PHOSPHINAMIDES

TABLE	XIX.	PHOSPHINATES
-------	------	--------------

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₆	OF OC ₂ H,	KOH, C ₂ H ₅ OH, 80°, 2.5 hr		A, $\langle p \rangle$ o ϕ OC_2H_5	
184				B, Space H	
		NaNH ₂ , C ₂ H ₅ OH, 80°, 20 hr	-	A: 64.8, B: 35.2 (-) A: 25, B: 75 (52)	442 442
C ₈	O ^P OC ₂ H,	n-C4H9Li (2.2 eq), THF, -75°	C ₆ H ₅ COC ₆ H ₅ (2.5 eq)	$(C_6H_5)_2(HO)C \longrightarrow C(OH)(C_6H_5)_2$ (45) O OC ₂ H ₅	40
		n-C4H9Li, THF, -75°	C ₆ H ₅ CH ₂ Br	$CH_2C_6H_5$ (40)	40, 503
		n-C ₄ H ₉ Li, CH ₃ OCH ₂ CH ₂ OCH ₃ ,		0 OC2H3 " (50)	40
		-75° n-C ₄ H ₉ Li, TMEDA-THF, 65:35, -75°, 30 min		" (80–85)	40
				\sim	
			C ₆ H₃CHO	$ \begin{array}{c} $	40
			CH ₃ COCH ₃		
			C ₆ H ₃ COCH ₃ C ₆ H ₃ COC ₆ H ₃ C ₆ H ₅ CH=NC ₆ H ₅ HCO ₂ C ₂ H ₅ C ₆ H ₃ CO ₂ C ₂ H ₅ CO ₂	O' OC_2H_5 A, R = C(OH)(CH_3)_2 (40) A, R = C(OH)(CH_3)C_6H_5 (55) A, R = C(OH)(C_6H_5)_2 (75) A, R = CH(C_6H_5)NHC_6H_5 (70) A, R = CHO (40) A, R = COC_6H_5 (35) A, R = CO_2H (65)	40, 503 40 40 39 39 39 39 39
			CH ₃ CO ₂ C ₂ H ₅	COCH,	40
185			C2H3OCO2C2H3	$\begin{array}{c} + & (40, \text{ total}) \\ + & (0, \text{ total}) \\ + & (0, \text{ total}) \\ + & (45, \text{ total}) \\ + & (45, \text{ total}) \\ + & (0, \text{ total}$	40

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₈ (Contd.)	OF OC ₂ H ₅	<i>n</i> -C₄H₂Li, TMEDA-THF, 65:35, -75°, 30 min	O ₂ , -75°, 1 hr, then CH ₃ OH, H ₂ O	OC ₂ H ₅ (-)	486
			n-C ₄ H ₉ Li (1.2 eq), TMEDA, THF, -70°, `30 min	C ₆ H ₅ CN, -70°, 1.5 hr, CH ₃ OH, H ₂ O	C_6H_5 (27) p-NH (27)	500
186	C ₁₂	$(C_2H_5O)(C_3H_7-n)P(O)CH_2C_6H_5$	NaNH ₂ (0.5 eq), ether, -33°	p-CH ₃ C ₆ H ₄ CH=NC ₆ H ₅	$O O C_2H_5$ A, (C_2H_5O)(C_3H_7-n)P(O)CH(C_6H_5)R +	
			NaNH ₂ (0.5 eq), ether, 10° NaNH ₂ (0.5 eq), ether, -33° NaNH ₂ (0.5 eq), ether.	C ₆ H ₅ CH=NC ₆ H ₅	B, $C_6H_5CH=CHR'$ A, (47), R = CH($C_6H_4CH_3-p$)NHC ₆ H ₅ , B, (traces), R' = $C_6H_4CH_3-p$ A, (0), R = CH($C_6H_4CH_3-p$)NHC ₆ H ₅ , B, (16), R' = $C_6H_4CH_3-p$ A, (72), R = CH(C_6H_3)NHC ₆ H ₅ , B, (traces), R' = C_6H_5 A, (45), R = CH(C_6H_5)NHC ₆ H ₅ ,	476 476 476 476
			10° NaNH ₂ (0.5 eq), NH ₃ (liq)		B, (10), R' = C_6H_5 A, (19), R = CH(C_6H_5)NHC_6H_5, B, (10), R' = C_6H_5 A (70), B = CH(C_1H_1)NHC_1H_2CI_2P.	476 476
			NoNU (05 as) other		B, (-), R' = C ₆ H ₅ A (58) B = C(C, H)NHC, H (CH ₂ -2)	476
			- 33°	CHCH-NC6H4CH3-0	B, (traces), $\mathbf{R}' = C_6 H_3$ $\mathbf{R}_6 = C_6 H_3$	476
				C ₆ H ₃ CH=NC ₆ H ₄ CH ₃ -p	B, (traces), $R' = C_6H_5$ A, (81), $R = CH(C_6H_5)NHC_6H_4CH_3-p$, B, (traces), $R' = C_6H_5$	476
	C		NaNH ₂ (0.5 eq), ether, 10°		A, (20), $R = CH(C_6H_5)NHC_6H_4CH_3-p$, B, (-), $R' = C_6H_5$	476
	C ₁₃	(I-C3H7O)(C3H7-#)F(O)CH2C6H5	- 33°	C6H3CH—NC6H3	+ B, C ₆ H ₅ CH=CHR' A. (74), R = CH(C ₄ H ₅)NHC ₄ H ₄ .	476
			NaNH ₂ (0.5 eq), ether, 10° NaNH ₂ (0.5 eq), ether, -3° NaNH ₃ (0.5 eq), ether.	C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ -p	B, (traces), $R' = C_6H_5$ A, (47), $R = CH(C_6H_5)NHC_6H_5$, B, (traces), $R' = C_6H_5$ A, (68), $R = CH(C_6H_5)NHC_6H_4CH_3-p$, B, (traces), $R' = C_6H_5$ A, (29), $R = CH(C_2H_2)NHC_6H_4CH_3-p$,	476 476 476
	C15 C16	(C ₆ H ₅)(C ₂ H ₅ O)P(O)CH ₂ C ₆ H ₅ (C ₂ H ₅ O)(C ₆ H ₅)P(O)CH ₂ C ₆ H ₄ OCH ₃ -p	10° t-C ₄ H ₉ OK (2.2 eq), C ₆ H ₆ t-C ₄ H ₉ OK (2 eq),	O ₂ , 1 hr p-ClC ₆ H ₄ CHO	B, (traces), $\mathbf{R}' = \mathbf{C}_{6}\mathbf{H}_{5}$ $\mathbf{C}_{6}\mathbf{H}_{5}\mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H}\mathbf{C}_{6}\mathbf{H}_{5}$ (61) $p-\mathbf{C}\mathbf{I}\mathbf{C}_{6}\mathbf{H}_{4}\mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H}\mathbf{C}_{6}\mathbf{H}_{4}\mathbf{O}\mathbf{C}\mathbf{H}_{3}$ - p (41)	435 436
187			$C_6H_5CH_3$, reflux, 8.5 hr ι - C_4H_9OK (eq), $C_6H_5CH_3$, reflux, 6 hr	СНО	$CH=CHC_6H_4OCH_{3}-p$ (58)	436
	C ₁₉	C ₆ H ₅	t-C₄H₂Li, THF, -70°, 15 min	HCl, - 70°	$C_6H_5P(O)(OH)CH_2C(CH_3)=C(CH_3)CH_2COC_6H_5$ (100)	501
		O C ₆ H ₅		CH ₃ OH, -70°	$C_6H_5P(O)(OCH_3)CH_2C(CH_3)=C(CH_3)CH_2COC_6H_5$ (47)	501
				C ₆ H ₅ CHO, -70°	$C_6H_5CH(OH) \xrightarrow{PO}_{C_6H_5}$ (29)	501
				$C_6H_sCOC_6H_s, -70^\circ$	C_6H_5CO O C_6H_5 $C(OH)(C_6H_5)_2$ (9.2)	501

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C _s	OF CH,	NaOH, 3 <i>N</i> , heat, 24-48 hr	-		545
			20	$B, \langle P \rangle$ $O CH_{3}$ $A: 2, B: 3 (\cdots)$ $O CO_{2}H$	\$45
188		- 78°C, 30 min	002	р СО ₂ Н (33) + р (10) О СН ₃ О СН,	
c,	о Рсн,	NaOH, 3 <i>N</i> , heat, 23 hr	-	A. O CH ₃	545
				B, CH ₁	
	$\langle \mathcal{A} \rangle$	NaOH, 3 <i>N</i> , heat, 27 hr	-	A: 99, B: 1 $(-)$ A, $\langle P \rangle$	545
	о сн,			0 сн.	
	OF CH,			B, p OP CH ₃ A: 1, B: 2, (-)	
с,	P CH.	NaOH, 3 <i>N</i> , heat, 46 hr	-		545
	о,				
				O ^{CH} 3 A: 9, B: 1 (-)	
C10	O ^P C ₆ H ₅	<i>n</i> -C ₄ H ₉ Li, TMEDA, THF, - 70°, 30 min	C ₆ H ₅ CN, -70°, 1 hr, then 3 <i>N</i> HCl	C_6H_5 P NH (5)	259
с.,	\square	NaOH. 3 N. heat.	_	A (545
8	OF C.H.	48 hr		O ^P C ₆ H ₅	
9				в. <	
	5. 541			O C ₆ H ₅ A: 5.5, B: 1 (-)	
C12) p	n-C₄H₀Li(1.5 eq), THF – 75°	C6H3COC6H3 (2.5 eq)	$(C_6H_5)_2(HO)C - C(OH)(C_6H_5)_2$ (20)	40
	0 ⁶⁷ `C ₆ H ₃	n-C ₄ H ₉ Li (2.2 eq), THF, -75°	C ₆ H ₅ COC ₆ H ₅ (2.5 eq)	0 ℃ ₆ H ₅ " (35)	40
		<i>n</i> -C₄H₂Li, THF, −75°	C ₆ H ₅ CH ₂ Br	CH ₂ C ₆ H ₃ (15-10)	40, 503
		n-C4H9Li, TMEDA-THF, 65:35. – 75°	C ₆ H ₃ CH ₂ Br	0° C ₆ H ₅ " (55)	40

TABLE XX. PHOSPHINE OXIDES

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₂ (Contd.)	O ^P C _e H _s	n-C₄H₀Li, THF, −70°	С6Н3СНО	СH(OH)C ₆ H ₅ 0 С ₆ H ₅ (40)	40
				C ₆ H ₅ CO ₂ C ₂ H ₅		259
61				CH3COCH3 C6H3COCH3 C6H3COC6H3	A, R = COC ₆ H ₃ (-) A, R = C(OH)(CH ₃) ₂ (35) A, R = C(OH)(CH ₃) _C H ₃ (40) A, R = C(OH)(C ₆ H ₃) ₂ (47) $\searrow OH$	40 40 40
0			n-C4H9Li, TMEDA, THF, -75°, 30 min	O ₂ , -75°, 1 hr, then CH ₃ OH, H ₂ O	(26)	486
				CO2	$\sum_{O''} C_{O_2H} (30) + \sum_{O''} C_{O_2H} (30)$	39
				(C ₆ H ₃) ₂ P(O)Cl	$ \sum_{\substack{p \in PO(C_6H_5)_2 \\ C_6H_5}} PO(C_6H_5)_2 (-) $	40
			n-C ₄ H ₉ Li (1.2 eq), TMEDA, THF, – 70°, 30 min	C ₆ H ₃ CN, −70°, 1.5 hr, CH ₃ OH, H ₂ O	P NH C C H.	
				p-(CH ₃) ₂ NC ₆ H ₄ CN	A, $R = C_6 H_5$ (42) A, $R = C_6 H_4 N(CH_3)_2 p$ (50)	500 259
				p-(C2H3)2NC6H4CN m.m'.p-(CH3O)3C6H2CN	A, R = $C_6H_4N(C_2H_5)_2$ -p (53) A, R = $C_6H_2(OCH_3)_3$ -m.m',p (45)	259 259
				CN CN	A, R = (36)	259
					$A, R = \underbrace{\langle S \rangle}_{S} (29)$	259
				\bigcirc	$A, R = \bigcup_{N} (30)$	259
				CN CN		259
	C14	(C ₆ H ₅)(CH ₃)P(O)CH ₂ C ₆ H ₅	ı-C₄H9OK	C ₆ H ₅ CH=NC ₆ H ₅	$O' C_6H_3$ (C ₆ H ₃)(CH ₃)P(O)NHC ₆ H ₃ (51)	438
161					$C_6H_3CH=CHC_6H_5$ (73)	
	Cis	CH ₂ =C=CHP(O)(C ₆ H ₅) ₂	(CH ₃ CuC≡CC ₆ H ₃)Li, ether, THF	NH4CI, H3O	$(C_6H_5)(CH_3)PO_2H$ (21) $CH_2 = CRCH_2P(O)(C_6H_5)_2$ $A, R = CH_3$ (45)	482
			(CH ₃ CuC ₆ H ₅)Li, ether, THF, [(CH ₂) ₂ Cu]Li, THF	NH4CI, H2O	A: 9, R = CH ₃ , A: 1, R = C ₆ H ₃ (90) CH ₂ =C(CH ₂)CH(P(O)(C, H ₂), 1CH(P(O)(C, H ₂), 1C(CH ₂)=CH ₂	165, 482
			0° [(CH ₃) ₂ Cu]Li, THF,	NH4CI, H2O	$CH_2 = CRCH_2P(O)(C_6H_3)_2$ $CH_2 = CRCH_2P(O)(C_6H_3)_2$ (42)	105
			- 10° [(CH ₃) ₂ Cu]Li, THE_ether_1:1	NH4CI	A, $\vec{R} = CH_3$ (49) A, $\vec{R} = CH_3$ (80)	165 166
			-20° , 20 min (CH ₃ CuC ₄ H ₉ -n)Li, THF-ether, 1:1,	NH₄CI	A: 15, R = CH ₃ , A: 85, R = C ₄ H ₉ -n (80)	166, 482
			-20° , 20 min (CH ₃ CuC ₃ H ₇ - <i>i</i>)Li, THF-ether, 1:1,	NH₄CI	A: 10, R = CH ₃ , A: 90, R = C ₃ H ₇ - <i>i</i> (82)	166
			-20° , 20 min (CH ₃ CuC ₄ H ₉ - <i>t</i>)Li, THF-ether, 1:1, -20° , 20 min	NH₄CI	A, $R = C_4 H_{9}$ -r (85)	166

No. of C Atom	ns Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₅ (Contd.)	$CH_2 = C = CHP(O)(C_6H_3)_2$	(t-C4H9CuC3H7-i)Li, THF-ether, 1:1,	NH₄CI	A: 80, R = C ₄ H ₉ - <i>t</i> , A: 20, R = C ₃ H ₇ - <i>i</i> (78)	166
		-20° , 20 min (<i>i</i> -C ₃ H ₇ CuC ₄ H ₉ - <i>n</i>)Li, THF-ether, 1:1, 2020 20	NH₄CI	A: 60, R = C_3H_7 - <i>i</i> , A: 40, R = C_4H_9 - <i>n</i> (90)	166
		-20° , 20 min (CH ₃ CuC \equiv CC ₆ H ₃)Li, THF-ether, 1:1, -20° 20 min	NH₄CI	$\mathbf{A},\mathbf{R}=\mathbf{C}\mathbf{H}_{3}(75)$	166
		$[(CH_3)_2Cu]Li,$ THF-ether, 1:1, -20° 20 min	H ₂ O	A, $CH_2 = C(CH_3)CH_2P(O)(C_6H_3)_2$ + B, $(CH_2)_2 = CHP(O)(C_6H_2)_3$	166
192		-20,20 mm	сн3і С°н3сн=снсос°н3	A: 95, B: 5 (100) $CH_2 = C(CH_3)CH(CH_3)P(O)(C_6H_3)_2$ (88) $CH_2 = C(CH_3)CH[P(O)(C_6H_3)_2]CH(C_6H_3)CH_2COC_6H_3$ (66)	166 166
C16	$CH_2 = C = C(CH_3)P(O)(C_6H_5)_2$	[(CH ₃) ₂ Cu]Li, THF, -10°	NH₄CI, H₂O	$CH_2 = C(CH_3)CH(CH_3)P(O)(C_6H_5)_2$ (71)	165
	$CH_3CH=C=CHP(O)(C_6H_5)_2$	[(CH ₃) ₂ Cu]Li	NH₄CI	$CH_3CH = C(CH_3)CH_2P(O)(C_6H_5)_2$ cis: 20 trans: 80	166
		[(t-C ₄ H ₉)] ₂ CuLi	NH₄Cl	$CH_3CH = C(C_4H_{9^{-1}})CH_2P(O)(C_6H_5)_2$	166
	$CH_2 = C(CH_3)CH_2P(O)(C_6H_5)_2$	CH ₃ Li (1 eq). THF, - 70°, 30 min. Cul (1 e	H2O eq),	$(CH_3)_2C=CHP(O)(C_6H_3)_2$ (50)	166
		CH ₃ Li (1 eq), -20°	CH ₂ =CHCH ₂ Br	$CH_2 = C(CH_3)CH(R)PO(C_6H_5)_2$ A. R = CH_2CH=CH ₂ (40) A. R = CH ₂ (45)	166 166
			С«н,сн=снсос«н,	$A. R = CH(C_6H_5)CH_2COC_6H_5 (45)$	166
	CH ₃ CH=CHCH ₂ P(O)(C ₆ H ₃) ₂ cis	<i>n</i> -C ₄ H ₉ Li, THF, -70°	, -70° to 25°	(72)	492
	trans CH ₂ ==CHCH(CH ₃)P(O)(C ₆ H ₃) ₂	n-C ₄ H ₉ Li, THF	C ₆ H ₃ SSC ₆ H ₃	(E): 3, (Z): 97 (E): 97, (Z): 3 (-) $(C_6H_5)_2P(O)C(CH_3)=CHCH_2SC_6H_5$ (-)	492 622
C ₁₈	$C_2H_3C(CH_3)=CHCH_2P(O)(C_6H_3)_2$ (E)	<i>n</i> -C₄H ₉ Li, THF, −70°		(<i>E</i>): 95. (<i>Z</i>): 5 ($-$)	492
C19	$(C_6H_3)_2P(O)CH(CH_3)C(CH_3)=CHCH_3$ $(C_6H_3)_2P(O)CH_2C_6H_3CI_2-m,m'$	n-C4H9Li 1-C4H9OK (1.8 eq), C6H6	C ₆ H ₃ CHO O ₂	$(C_6H_5)_2P(O)C(CH_3)[CH(OH)(C_6H_5)]C(CH_3)=CHCH_3 (-)$ $(C_6H_5)_2PO_2H_{(88)}$	393 435
	(C ₆ H ₃) ₂ P(O)CH ₂ C ₆ H ₃	t-C ₄ H ₉ OK (2 eq), (CH ₃) ₂ NCHO, room temperature, 20 min	C6H3CHO	$m,m'-Cl_2C_6H_3CH==CHC_6H_3Cl_2-m,m'$ (78) $C_6H_5CH=CHC_6H_5$ (48)	436
		100°, 2 hr Room temperature, 5 hr	C ₆ H ₃ CH=CHCHO C ₆ H ₃ CO ₂ CH ₃ C ₆ H ₃ COC ₆ H ₃	$C_6H_5(CH=CH)_2C_6H_5$ (52) $C_6H_5C=CC_6H_5$ (37) $(C_6H_3)_2C=CHC_6H_5$ (52)	436 436 436
				CH=CHC ₆ H,	
19		r-C ₄ H ₉ OK (3 eq), (CH ₃) ₂ NCHO, room temperature, 20 min	C ₆ H₄(CHO)₂-p	CH=CHC ₆ H ₅ (51)	436
3		r-C ₄ H ₉ OK, C ₆ H ₆ , reflux, 9 hr	()°	CHC ₆ H _s (47)	38
			C ₆ H ₃ CHO C ₆ H ₃ COC ₆ H ₃	$C_{6}H_{3}CH=CHC_{6}H_{3} (70)$ $(C_{6}H_{3})_{3}C=CHC_{6}H_{5} (70)$	38 38
				(43)	38
		Reflux, 14 hr Reflux, 10 hr <i>r</i> -C ₄ H ₉ OK (1.5 eq), C ₆ H ₆ , 1 hr	O C ₆ H ₃ CH=CHCHO C ₆ H ₃ COCH ₃ C ₂ H ₃ COCH ₃ C ₆ H ₃ CH=NC ₆ H ₅ , reflux, 4 hr	$\begin{array}{c} C_{0}C_{0}C_{0}H_{3}\\ C_{0}H_{3}(CH=CH)_{2}C_{0}H_{3} \ (46)\\ C_{0}H_{3}C(CH_{3})=CHC_{0}H_{3} \ (60)\\ C_{0}H_{3}CH=C(CH_{3})C_{2}H_{3} \ (53)\\ (C_{0}H_{3})_{2}P(0)NHC_{0}H_{3} \ (55)\\ +\end{array}$	38 38 38 435
		$t-C_4H_9OK$ (1.7 eq), C_6H_6 , room temperature, 2 hr	C ₆ H ₅ CH ₂ Cl	$C_6H_5CH=CHC_6H_5$ (50) (C_6H_5) ₂ P(O)CH(C_6H_5)CH ₂ C ₆ H ₅ (33)	434

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₉ (Contd.)	(C ₆ H ₅) ₂ P(O)CH ₂ C ₆ H ₅	<i>t</i> -C ₄ H ₉ OK (3 eq), C ₆ H ₆ , reflux, 1 hr	t-C₄H₀OOH (1.2 eq)	$C_6H_5CH=CHC_6H_5$ (56) +	435
a sense contractor		1-C4H9OK, C6H2CH3,	C ₂ H ₅ ONO ₂	$(C_6H_5)_2PO_2H$ (80) $(C_6H_5)_2P(O)CH(NO_2)C_6H_3$ (62)	257
		0° Reflux, 12 hr	(CH ₃) ₂ NC ₆ H ₄ NO-p	$p-(CH_3)_2NC_6H_4N=CHC_6H_5$ (-)	38
		Reflux, 7 hr	C ₆ H ₃ COCOC ₆ H ₃	$(C_6H_5)_2PO_2H^{-}(73)$ $C_6H_5CH=C(C_6H_5)C(C_6H_5)=CHC_6H_5$ (50) $CH=CHC_6H_5$	38
ē		Reflux, 12 hr	C ₆ H ₄ (CHO) ₂ -p	(57)	38
.			СНО	$CH=CHC_{6}H_{5}$ $CH=CHC_{6}H_{5}$ $CH=CHC_{6}H_{5}$ $CH=CHC_{6}H_{5}$ $CH=CHC_{6}H_{5}$ $CH=CHC_{6}H_{5}$ $CH=CHC_{6}H_{5}$	38
				(47)	38
		t-C ₄ H ₉ OK (1.1 eq), C ₆ H ₃ CH ₃ , reflux,	с,н,снсн,	C_6H_5 $ C_6H_5$ (37)	228
		$t_{-}C_{4}H_{9}OK$ (1.5 eq), $C_{6}H_{3}CH_{3}$, reflux, 6 br	C₄H₃CHO	$C_6H_5CH=CHC_6H_5$ (85)	436
		Reflux, 5 hr	C6H3COCH3	$C_6H_5C(CH_3)=CHC_6H_5$ (76)	436
		Reflux, 4.5 hr	\bigcirc°	(55)	436
		Reflux, 3 hr	С ₆ Н ₄ (СНО) ₂ -р	CH=CHC ₆ H ₅ (50)	436
		<i>t</i> -C₄H ₉ OK (2 eq), C ₆ H ₃ CH ₃ , reflux, 9 hr	CHO N	$CH = CHC_{6}H_{5}$ $CH = CHC_{6}H_{5}$ $CH = CHC_{6}H_{5}$ (55)	436
		t-C₄H₄OK (2 eq), C ₆ H₃CH₃, reflux, 9 hr	C ₆ H ₅ NHN=CHC ₆ H ₄ CHO-p	(76) CH=NNHC ₆ H ₅	436
		C_6H_5Li , ether	с₅н₃сно	$(C_6H_3)_2PO_3H$ (76) ($(C_6H_3)_2P(O)CH(C_6H_3)R$ A, R = CH(OH)C_2H_3 evulter (5) three (90) ()	38, 302
105		C ₆ H ₅ Li, ether	СН2СН2	$A, R = CH_2CH_2OH $ (91)	228
			o c₄h₅chchc₄h₅	$A, R = CH(C_6H_5)CH(OH)C_6H_5 $ (85)	228
		Reflux, 5 hr C ₆ H ₃ Li, THF	O_2 , -10°, 15 min, then H ⁺ CO_2 , then H ⁺ $C_6H_5CHCH_2$ O	A, R = OH (42) A, R = CO_2H (65) A, R = $CH(C_6H_5)CH_2OH$ (60)	435 38 228
		Reflux Reflux, 45 min n-C ₄ H ₉ Li, ether, room temperature,	$C_6H_5CH_2Cl$, reflux $C_6H_5CH_2Br$, reflux, 45 min C_6H_5COCl , reflux, 1 hr	A, $R = CH_2C_6H_5$ (-) A, $R = CH_2C_6H_5$ (34) A, $R = COC_6H_5$ (-)	334 334 254
		t nr t-C₄H₀Li (1.2 eq), THF, TMFDA	C ₆ H ₅ CN	C ₆ H ₃ CH ₂ COC ₆ H ₃ (72)	500
	<i>t</i> -C ₄ H ₉ CH=C=CHP(O)(C ₆ H ₅) ₂	room temperature [(CH ₃) ₂ Cu]Li	NH ₄ CI	(C ₆ H ₃) ₂ P(O)NH ₂ (70) t-C ₄ H ₉ CH=C(CH ₃)CH ₂ P(O)(C ₆ H ₅) ₂ cis: 30, trans: 70 (18)	166

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C20	C=CHP(O)(C ₆ H ₃) ₂	[(CH3)2Cu]Li, THF, - 10°	NH₄CI, H₂O	$= C(CH_3)CHP(O)(C_6H_3)_2 (41)$	165
	(C ₆ H ₃) ₂ P(O)CH(CH ₃)	n-C4H9Li	O ₂	сн,со (-)	262, 393
		n-C₄H₂Li, ether, -78°, 30 min	СН₃СНО	H ₃ C H_3 C (2RS, 3RS) HO HO H H H	262, 303
		n-C₄H₀Li, ether, −78°	C&H3CHO	$H_{3}C$ H	262. 303 393
C21	C ₆ H ₅ CH=C=CHP(O)(C ₆ H ₅) ₂	[(CH ₃) ₂ Cu]Li	NH₄CI	$C_6H_5CH = C(CH_3)CH_2P(O)(C_6H_5)_2$	165, 166
		(n-C ₄ H ₉) ₃ P added [(t-C ₄ H ₉) ₂ Cu]Li	NH4CI NH4CI	trans (80) $C_6H_2CH=C(C_6H_9-t)CH_2P(O)(C_6H_5)_2$ $c_1::20$ trans: 80 (95)	166 166
	$CH_2 = C = C(C_6H_5)P(O)(C_6H_5)_2$ (C_H_), P(O)CH(CH_2)C(CH_3) = CHC_4H_2+n	[(CH ₃) ₂ Cu]Li, THF, -10° n-C.H.Li	NH₄CI, H₂O C.H.CHO	$CH_2 = C(CH_3)CH(C_6H_3)P(O)(C_6H_5)_2 (53)$ $(C_5H_4)_2P(O)C(CH_4)C(CH_4)C(CH_4)C(CH_4) = CH(C_5H_{3-1} (-))$	165 393
	(C ₆ H ₅) ₂ P(O)CH(C ₆ H ₅)C ₂ H ₄ Cl	r-C ₄ H ₉ OK (1.25 eq), C ₆ H ₆ , room temperature, 3 hr	-	$C_6H_5 \sum_{i=1}^{P(O)(C_6H_5)_2} (71)$	228
	CHCH ₂ P(O)(C ₆ H ₃) ₂	n-C₄H₀Li, THF, –70°	$\bigcup_{O}^{C_{9}H_{17}}_{H}$		492
C22	$CH_3CH = C = C(C_6H_5)P(O)(C_6H_5)_2$	[(CH ₃) ₂ Cu]Li	NH₄CI	$CH_3CH=C(CH_3)CH(C_6H_5)P(O)(C_6H_5)_2$	165, 166
	$(C_6H_5)_2P(O)CH(C_6H_3)C(CH_3)=CH_2$ $(C_6H_5)_2P(O)C(CH_3)=CHCH_2SC_6H_5$	n-C4H9Li n-C4H9Li, THF	C ₆ H ₅ CHO C ₆ H ₅ COC ₆ H ₅	$(C_6H_3)_2P(O)C(C_6H_3)=C(CH_3)CH_2CH(OH)(C_6H_5)$ (-) $(C_6H_5)_2CH=C(CH_3)CH=CHSC_6H_5$ (68)	262 621
C ₂₃	CH ₂ P(O)(C ₆ H ₅) ₂	r-C₄H9OK (1.8 eq), C ₆ H ₆	O ₂	(90)	435
		r-C ₄ H ₉ OK (1.1 eq), C ₆ H ₃ CH ₃ , reflux, 12 hr	С₅Н₅СНСН₂	$(C_6H_5)_2PO_2H (95)$	228
C23	(C ₆ H ₅) ₂ P(O)CH(C ₆ H ₅) ₂	r-C ₄ H ₉ OK (1.8 eq), C ₆ H ₆	O ₂ , 50 min	$(C_6H_3)_2CO$ (85) + $(C_6H_5)_2PO_2H$ (90)	435

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₂₅	n-C ₄ H ₉ CH=C=C(C ₆ H ₅)P(O)(C ₆ H ₅) ₂	[(CH ₃) ₂ Cu]Li, THF, - 10°	NH4CI,H2O	n-C ₄ H ₉ CH=C(CH ₃)CH(C ₆ H ₅)P(O)(C ₆ H ₅) ₂ (16)	165
(Conta.)	$t-C_4H_9CH=C=C(C_6H_5)P(O)(C_6H_5)_2$	[(CH ₃) ₂ Cu]Li	NH ₄ CI	1-C ₄ H ₉ CH=C(CH ₃)CH(C ₆ H ₅)P(O)(C ₆ H ₅) ₂	166
C27	(C ₆ H ₅) ₂ P(O)CH ₂ C(C ₆ H ₅)=CHC ₆ H ₅	t-C₄H₂OK (2 eq), C₂H₅OH	02	$C_{6}H_{5}CH=C(C_{6}H_{5})CH=CHC(C_{6}H_{5})=CHC_{6}H_{5}$ (16)	435
	$\bigcirc -CH = C = C(C_6H_3)P(O)(C_6H_3)_2$ $CH_2P(O)(C_6H_3)_2$	[(CH ₃) ₂ Cu]Li, THF, -10°	NH4CI, H2O	$(C_6H_5)PO_2H (93)$ $-CH=C(CH_3)CH(C_6H_5)P(O)(C_6H_5)_2 (50)$ $(CH=CH)_2C_6H_5$	165, 166
198 C.,	CH ₂ P(O)(C ₆ H ₃) ₂	ſ-C₄H9OK, C6H5CH3, reflux, 9 hr	С₅Н₅СН≕СНСНО	$(CH=CH)_3C_6H_3$ (25)	437
				(C ₆ H ₃) ₂ PO ₂ H (80)	
C33	$(C_6H_5)_2C = C = C(C_6H_5)P(O)(C_6H_5)_2$	[(CH ₃) ₂ Cu]Li, THF, - 10 ^c	NH₄CI, H₂O	$(C_6H_5)_2C = C(CH_3)CH(C_6H_5)P(O)(C_6H_5)_2$ (69)	165
	(C ₆ H ₅) ₂ P(O)CH(C ₆ H ₅)CH(C ₆ H ₅)CH(C ₆ H ₅)Cl	r-C ₄ H ₉ OK (1.3 eq), C ₆ H ₆ , 90 min, reflux		$C_{6}H_{3} \xrightarrow{P(0)(C_{6}H_{3})_{2}} (-)$	228
	CH₂P(C6H3)3Br [−]			CH₃P(C₀H₅)₃Br ⁻	
C ₃₈	CH-P(O)(C,H_)	r-C ₄ H ₉ OK (4 eq), (CH ₃) ₂ NCHO, 45 min	C ₆ H ₃ COC ₆ H ₅ , 24 hr	(53) CH=C(C,H_1)	437
				(C ₆ H ₅) ₂ PO ₂ H (65)	

TABLE XX. PHOSPHINE OXIDES (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₂	Reactant	Base and Conditions r-C4H9Li, THF, -70°, 30 min	Quenching Reagent $CH_3CHO, -70^{\circ}, 3 hr, then -20^{\circ}, H_3O^+$ $C_6H_5CHO, -70^{\circ}, 3 hr, then -20^{\circ}, H_3O^+$ $CH_3COCH_3, -70^{\circ}, 3 hr, then -20^{\circ}, H_3O^+$ $C_6H_5COCH_3, -70^{\circ}, 3 hr, then 20^{\circ}, H_3O^+$ H_3O^+ H_3O^+ H_3O^+ $C_6H_5COCH_3, -70^{\circ}, 3 hr, then 20^{\circ}, H_3O^+$	Product(s) and Yield(s) (%) $ \begin{array}{c} $	Refs. 502 502 502 502 502
				S ^{-P} C ₆ H ₅ ()	

TABLE XXI. PHOSPHINE SULFIDES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C ₁₂ (Contd.)	S ^P C ₆ H ₅	t-C₄H₂Li, TMEDA, THF, -70°, 30 min	$C_{6}H_{5}COC_{6}H_{5},$ -70°, 3 hr, then -20°, $H_{3}O^{+}$	$ \begin{array}{c} CH_2C(OH)(C_6H_5)_2 \\ \\ S \\ C_6H_5 \end{array} (-) \\ \end{array} $	502
			CH ₃ CO ₂ C ₂ H ₅ , -70°, 3 hr	$COCH_3$ (25) C_6H_5	502
			CO ₂	C_{6H_5} (12)	502
	S ^P C ₆ H ₅	$n-C_4H_9Li$, THF, -70°	CN N	$\sum_{S} P C_6 H_5 $ (7)	259
				$ \begin{array}{c} +\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
		<i>n</i> -C ₄ H ₉ Li, TMEDA, THF, -70°, 20 min	C ₆ H₅CN	$-C_6H_5$ (62)	259
		30 min		$S^{\prime} C_{6}H_{5}$ P (25)	259
			N [×]	$S \xrightarrow{+} C_6H_5$ $+$ $N \xrightarrow{+} -C(NH_2) = CH$ $V D$ (20)	
				S [≠] C ₆ H ₅	
		$n-C_4H_9Li$ (2.2 eq), THF, -75°	C ₆ H ₅ COC ₆ H ₅ (2.5 eq)	$(C_6H_5)_2(HO)C \xrightarrow{p} C(OH)(C_6H_5)_2$ S C_6H_5 (33)	39
		<i>n</i> -C ₄ H ₉ Li, TMEDA, THF, -75° , 30 min	C ₆ H₅CHO	CH(OH)C ₆ H ₅ (36)	39

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₂ (Contd.)	S ^P C ₆ H ₅		CH ₃ COCH ₃	$\sum_{\mathbf{C}_{6}\mathbf{H}_{5}}^{\mathbf{C}} C(OH)(CH_{3})_{2} (30)$	39
			C ₆ H ₅ CO ₂ C ₂ H ₅	$\sum_{s} COC_{6}H_{s} (25)$	39
				$\sum_{s=0}^{p} C_{6}H_{s} $ (10)	
			C ₆ H ₅ COC ₆ H ₅	P (71)	39
C ₁₇	S ^P C ₆ H ₅	<i>t</i> -C ₄ H ₉ OK (1.2 eq), -70°		$N \rightarrow -C(NH_2) = CH \qquad (85)$	259

TABLE XXII. PHOSPHINOTHIOATES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Ref.
C ₁₉	(C ₆ H ₅) ₂ P(O)SCH ₂ C ₆ H ₅	n-C₄H9Li, THF, −78°	CH3I	$(C_{6}H_{5})_{2}P(O)CH(CH_{3})C_{3}H_{7}-n (57)$ + $C_{6}H_{5}CH_{2}SCH_{3} (54)$ + $(C_{6}H_{5})_{2}P(O)C(CH_{3})(SCH_{3})C_{6}H_{5} (11)$ + $(C_{6}H_{5})_{2}P(O)CH_{3} (14)$ + $C_{6}H_{5}CH_{2}SC_{4}H_{9}-n (12)$	50

No. of C		Base and			
Atoms	Reactant	Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
c,	(CH ₃ O) ₂ P(O)CH ₂ CH=CHCl	C2H3ONa, C2H3OH	CH3COC6H3	$(CH_3O)_2P(O)CH=CHCHCH(CH_3)C_8H_3$ (25)	244
C,	(C ₂ H ₃ O) ₂ P(O)CH ₂ C≡CH	C ₂ H ₃ SNa (1.2 eq), C ₂ H ₃ OH, reflux,	5 —	$(C_2H_3O)_2P(O)CH=C(CH_3)SC_2H_3$ (-)	41
	(C ₂ H ₅ O) ₂ P(O)CH ₂ C(Br)=CHBr	C ₂ H ₃ ONa, C ₂ H ₃ OH,	H ₂ O	$(C_2H_5O)_2P(O)CH=C(OC_2H_5)CH_2OC_2H_5$ (70)	580
		(CH ₃) ₂ NH, ether,	-	$(C_2H_3O)_2P(O)CH=C[N(CH_3)_2]CH_2N(CH_3)_2$ (-)	580
	(C2H5O)2P(O)CH2C(Br)=CH2	C ₂ H ₅ MgBr, ether, 5°,	-	$(C_2H_3O)_2P(O)CH=C=CH_2$ (45)	580
		1.5 hr NaH, ether,	HCI, H2O	$(C_2H_5O)_2P(O)C\equiv CCH_3$ (90)	580
		$C_2H_3ONa, C_2H_5OH,$	H ₂ O	(C ₂ H ₃ O) ₂ P(O)CH=CRCH ₃	2227
		reflux, 6 hr $i-C_3H_7ONa$, $i-C_3H_7OH$,	H ₂ O	A, $R = OC_2H_5$ (75) A, $R = OC_3H_7-i$ (80)	580 580
		reflux, 6 hr t-C4H9OK, t-C4H9OH,	H ₂ O	$A, R = OC_4 H_{9} t (82)$	580
		reflux, 6 hr (CH ₃) ₂ NH, ether,		$A, R = N(CH_3)_2 (-)$	580
	(C ₂ H ₂ O) ₂ P(O)CH ₂ CH=CHBr	room temperature, 3 hr C ₂ H ₅ ONa (1. 2 eq),	-	(C,H,O),P(O)CH,CH=CHR	
		C ₂ H ₅ OH, reflux, 1 hr C ₆ H ₅ ONa (1.2 eq),	-	$A, R = OC_2H_5 (66)$ $A, R = OC_6H_5 (84)$	41 41
		C ₂ H ₃ OH, reflux, 1 hr (C ₂ H ₄) ₂ NH (3 eq).		$\mathbf{A} \cdot \mathbf{R} = \mathbf{N}(\mathbf{C}_{2} \mathbf{H}_{4})_{2} (80)$	41
		THF, reflux, 6 hr C-H-SNa (1 2 co)	12	$A_{i}B = SC_{i}H_{i}$ (68)	41
		C ₂ H ₃ OH, reflux, 1 hr		P(OVOC H)	26250
	(C,H,O),P(O)CH,CH=CHCl	C-H-ONa, C-H-OH	C4H4CHO	A. //	
				^K O ^K R' ₊	
				$\mathbf{B}_{1}(\mathbf{C}_{2}\mathbf{H}_{3}\mathbf{O})_{2}\mathbf{P}(\mathbf{O})\mathbf{C}\mathbf{H}=\mathbf{C}\mathbf{H}\mathbf{C}\mathbf{H}\mathbf{C}\mathbf{R}\mathbf{R}'$	
				A: 65, B: 35, $R = H, R' = C_6 H_5$ (63)	244
		C2H3ONa, C2H3OH	с,н,сосн,	A: 35, B: 65, $R = CH_3$, $R' = C_6H_5$ (51)	244
		2	CH ₃ COC ₆ H ₄ OCH ₃ -p	A: 35, B: 65, R = CH ₃ , R' = C ₆ H ₄ Cl- p (40) A: 35, B: 65, R = CH ₃ , R' = C ₆ H ₄ OCH ₃ - p (34)	244
		Piperidine (2 eq), THF,		$(C_2H_5O)_2P(O)CH=CHCH_2N$ (81)	41
		$n-C_4H_9Li$, THF, = 30 to = 80°	n-C ₄ H ₉ I	$(C_2H_5O)_2P(O)CH(C_4H_9-n)CH=CHCl$ (30)	244
C ₈	$(C_2H_3O)_2P(O)CH_2CH=CH_2$ $(C_2H_3O)_2P(O)CH_2C\equiv CCH_3$	C ₂ H ₃ ONa, C ₂ H ₃ OH C ₂ H ₃ ONa (1.2 eq),	ie 34	$(C_2H_3O)_2P(O)CH=CHCH_3$ (43) $(C_2H_3O)_2P(O)CH=C(OC_2H_3)C_2H_3$ (-)	445 41
		C ₂ H ₃ SNa (1,2 eq),	-	$(C_2H_3O)_2P(O)CH_2C(OC_2H_3)=CHCH_3$ (-) $(C_2H_3O)_2P(O)CH_2C(SC_2H_3)=CHCH_3$ (-)	41
	(C2H3O)2P(O)CH2C(Br)=CHCH3	C ₂ H ₃ OH NaH, ether,	HCl, H ₂ O	$(C_2H_3O)_2P(O)CH=C=CHCH_3$ (9)	580
		room temperature, 1 hr	н.о	+ $(C_2H_3O)_2P(O)CH_2C \equiv CCH_3$ (78) $(C_3H_2O)_2P(O)CH = C(OC_3H_4)C_3H_3$ (77)	580
		reflux, 6 hr (CH ₃) ₂ NH, ether,	-	$(C_2H_5O)_2P(O)CH=C[N(CH_3)_2]C_2H_5$ (-)	580
		room temperature, 3 hr		\frown	
	(C ₂ H ₅ O) ₂ P(O)CH ₂ C(CH ₃)=CHBr	Piperidine (2 eq), THF, reflux, 6 hr	(=)	$(C_2H_5O)_2P(O)CH=C(CH_3)CH_2N$ (78)	41
		C ₂ H ₅ ONa (1.2 eq), C ₂ H ₅ OH, reflux, 1 hr		$(C_2H_3O)_3P(O)CH_3C(CH_3)=CHR$ A, R = OC, H, (83)	41
		C ₂ H ₃ SNa (1.2 eq), C ₂ H ₂ OH reflux 1 hr	·=	$A, R = SC_2H_3 (62)$	41
		C_6H_5SNa (1.2 eq),	-	$A, R = SC_6H_5$ (71)	41
	$(C_2H_3O)_2P(O)CH_2CH=C(CH_3)Cl$	C_2H_3ONa (1.2 eq),	100	$(C_2H_5O)_2P(O)CH=CH(OC_2H_5)C_2H_5$ (60)	41
		$C_2H_3OH, reliax, 2 hrC_2H_3SNa (1.2 eq),$	-	$(C_2H_5O)_2P(O)CH_2CH=C(CH_3)SC_2H_5$ (56)	41
	(C ₂ H ₅ O) ₂ P(O)CH ₂ CH=CHCH ₃	$n-C_4H_9Li$, THF, -60° , 1 hr	C ₆ H ₅ CH ₂ Br, -60°, 30 min, then room temperature r-C-H-Br	$(C_2H_5O)_2P(O)CHRCH=CHCH_3$ $A, R = CH_2C_6H_5$ (83) $A, R = C_2H_{2-7R}$ (92)	299 299
					200
			CH.Br	$\mathbf{A}, \mathbf{R} = \begin{bmatrix} (78) \\ CH, \end{bmatrix}$	277
			(C ₂ H ₅ O) ₂ CHCH ₂ Br	$A, R = CH_2CH(OC_2H_5)_2 (35)$	299
	(C ₂ H ₅ O) ₂ P(O)CH ₂ CH=CHCH ₃ or	C2H3ONa, C2H3OH		$(C_2 n_3 O_2 r(O_1 C n_2 C n_2 C n_3 C n_3 (/))$ +	445
	(C ₂ H ₅ O) ₂ P(O)CH=CHC ₂ H ₅			$(C_2H_3O)_2P(O)CH=CHC_2H_3 (25)$	

TABLE XXIV. PHOSPHONATES

No. of C Aton	ns Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C,	CH, PO(OC, H,);	NaNH ₂ , NH ₃ (liq), 30 min	i-C ₃ H ₇ Br, 2 hr	CHRP(O)(OC ₂ H ₃) ₂	
			n-C₄H₀Br, 2 hr C ₆ H₅CH₂Cl, 2 hr	A, $R = C_3 H_7 \cdot i$ (96) A, $R = C_4 H_9 \cdot n$ (97) A, $R = CH_2 C_6 H_5$, (64)	485 485 485
		NaNH2 (2.5 eq), NH3 (liq)	<i>n</i> -C ₄ H ₉ Br (2.4 eq)	$\int_{O} \int_{C(C_4H_9\cdot n)_2 P(O)(OC_2H_5)_2} (94)$	232
208		CH ₃ ONa, (CH ₃) ₂ NCHO, room temperature,	C₀H₅CHO	CH=CHC ₆ H ₅ trans (73)	597
		1.2 m	Срусно	CH=CH trans (42)	597
	CH2P(0)(OC2H3)2	NaNH ₂ , NH ₃ (liq). 30 min	i-C ₃ H ₇ Br, 2 hr	$A, R = C_3 H_{7^{-1}} (91)$	485
		NaNH, (0.5 eq), ether.	n-C ₄ H ₉ Br, 2 hr C ₄ H ₄ CH=NC ₄ H ₄ CH ₃ -n	$A, R = C_4 H_9 \cdot n (95)$	485
		- 33°	64.13011 (108.12013) p	S CHRP(O)(OC ₂ H ₅) ₂	
				B. CH=CHC ₆ H,	
		NaNH2 (0.5 eq), ether,	C ₆ H ₅ CH=NC ₆ H ₅	A: (18), B: (32), $R = CH(C_6H_5)NHC_6H_4CH_5-p$ A: (84), B: (), $R = CH(C_6H_5)NHC_6H_5$	477 477
	CH ₂ P(O)(C ₂ H ₅) ₂	-10° NaNH ₂ (0.5 eq), ether, -33°	C ₆ H ₃ CH=NC ₆ H ₄ Cl-o	A : (14), B : (20), R = CH(C_6H_5)NHC_6H_5 A : (54), B : ($-$), R = CH(C_6H_5)NHC_6H_4Cl-o A : (60) B : (12) R = CH(C_6H_5)NHC_6H_4Cl-o	477 477 477
			C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ -ø	A : (22), B : (27), K = CH(C ₆ H ₅)NHC ₆ H ₄ CH ₃ -o	4//
	(CH ₃ O) ₂ P(O)CH ₂ C(OCH ₃)=C(CH ₃)CO ₂ CH ₃	Base (?), THF, +23°		CH ₃ O ₂ C	398
	(C ₂ H ₅ O) ₂ P(O)CH ₂ CH=C(CH ₃) ₂	<i>n</i> -C ₄ H ₉ Li, THF, -60°, 1 hr	C ₆ H ₃ CH ₂ Cl	$(C_2H_5O)_2P(O)CHRCH=C(CH_3)_2$ A, R = CH_2C_6H_5 (55)	299
			n-C ₈ H ₁₇ Br	A, R = C_8H_{17} -n (94)	299
			CH ₂ Br	$A, R = \begin{array}{c} (78) \\ CH_2 \end{array}$	299
			Сн₂сі	$\mathbf{A}, \mathbf{R} = \mathbf{C}\mathbf{H}_2$	200
				(67) CH2OTHP	299
	(C ₂ H ₅ O) ₂ P(O)CH ₂ CH=CHOC ₂ H ₅	NaH, [(CH ₃) ₂ N] ₃ PO, heat	THPO i-C3H7CHO C6H4CHO	$i-C_3H_7CH=CHCH=CHOC_2H_3$ (57) $C_4H_7CH=CHCH=CHOC_2H_3$ (48)	150 150
			p-CH ₃ OC ₆ H ₄ CHO p-(CH ₃) ₂ NC ₆ H ₄ CHO	p-CH ₃ OC ₆ H ₄ CH=CHCH=CHOC ₂ H ₅ (47) p-(CH ₃) ₂ NC ₆ H ₄ CH=CHCH=CHOC ₂ H ₅ (48)	150 150
209			C2H,COCH,	C ₂ H ₃ (CH ₃)C=CHCH=CHOC ₂ H ₃ (33)	150
			\bigcup	CHCH=CHOC ₂ H ₃ (37)	150
	\wedge		C ⁶ H ³ COC ⁶ H ³	$(C_6H_5)_2C=CHCH=CHOC_2H_5$ (63)	150
C10	CH,P(O)(OC,H,),	K, C ₆ H ₆ , 70-80°	C ₂ H ₄ I	CHRP(O)(OC ₂ H ₃) ₂	1220
		NaNH2, NH3 (liq),	n-C₄H₀Br i-C₃H₂Br, 2 hr	A, $R = C_2H_3$ (50) A, $R = C_4H_9 \cdot n$ (76) A, $R = C_3H_7 \cdot i$ (87)	499 499 485
		30 m/n	<i>n</i> -C ₄ H ₉ Br, 2 hr C ₆ H ₃ CH ₂ Cl, 2 hr	A, R = C_4H_9-n (91) A, R = $CH_2C_6H_5$ (92)	485 485
		NaNH2 (2.5 eq), NH3 (liq), 30 min	$n-C_4H_9Br$ (2.5 eq)	(91) $C(C_4H_{q}\cdot n)_2 P(O)(OC_2H_3)_2$	485
		NaOH, 50% H2O, CH2Cl2 (n-C4H9)4N*1-	C ₆ H₅CHO	CH=CHC ₆ H ₅ (71)	534

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₀ (Contd.)	CH ₂ P(O)(OC ₂ H ₃) ₂	NaOH, 50% H ₂ O, CH ₂ Cl ₂ (n-C ₄ H ₉) ₄ N ⁺ 1 ⁻	с&н,сн=снсно	(68)	534
		NaOH, 50% H₂O, C ₆ H ₆ , (n-C₄H ₉)₄N*1 ⁻	C6H3CH=CHCHO	(75) (CH=CH) ₂ C ₆ H ₅	157
	$(C_3H_3O)_2P(O)CH_2C(CH_3)=CHCO_2CH_3$ (E)	LDA, THF-[(CH ₃) ₂ N] ₃ PO, 2:1,65°	ССНО.	(78)	143
	(C ₂ H ₃) ₂ P(O)CH ₂ C(CH ₃)=CHCO ₂ CH ₃ (Z)	CH ₃ ONa, CH ₃ OH	(0.6 eq) -62° to -68°, 3.25 hr C ₂ H ₃ CHO, (CH ₃) ₂ NCHO	$C_{3}H_{3}CH=CHC(CH_{3})=CHCO_{2}CH_{3}$ (83) (E), (Z)	529
			СНО,	CH=CHC(CH ₃)=CHCO ₂ CH ₃	529
	$(C_2H_5)_2P(O)CH_2C(CH_3)=CHCO_2CH_3$	30-35°, 45 min	(CH ₃) ₂ NCHO C ₆ H ₅ (CH=CH) ₂ CHO, (CH ₃) ₂ NCHO,	$(E), (Z) (-)$ $C_6H_5(CH=CH)_3C(CH_3)=CHCO_2CH_3$	528
	$(E):3, (Z):2(C_2H_3O)_2P(O)CH_2CH=C(CH_3)CO_2CH_3$	CH ₃ ONa, CH ₃ OH, 30-35°, 45 min	40°, 2 hr C ₆ H ₅ (CH=CH) ₂ CHO, (CH ₃) ₂ NCHO, 40°, 2 hr	(E): 85, (Z): 15 (-) $C_6H_3(CH=CH)_3CH=C(CH_3)CO_2CH_3$ (-)	528
		CH ₃ ONa OHC	(0.5 eq)		222
		NeH FICH AND BO	CH 0C U CH0	$CHO(CH_3) = CHCH = CHCH = C(CH_3)CH = CHCH = C(CH_3)C_2CH_3$ $(-)$ $(-)$	323
	(C2H3O)2r(O)CH2CH-C(CH3)OC2H3	heat	<i>p</i> -CH ₃ OC ₆ H₄CHO		150
					150
			C ₆ H ₅ COC ₆ H ₅	$(C_6H_5)_2C = CHCH = C(CH_3)OC_2H_5 (47)$	150
C		- C U 1: THE 705	CC1		226
CII	(C ₂ H ₅ O) ₂ P(O)CH ₂ C ₆ H ₄ Br-p	$n-C_4H_9Li$, THF, -70° , 15 min	CCI_4 , - 75°, then 70°, 15 min, then H ₂ O	$(C_2H_5O)_2P(O)CH(CI)C_6H_4Br-p$ (82)	236
			CCl_4 75°, then 70°, 15 min, then CH_3I , - 75°, then room temperature	$(C_2H_3O)_2P(O)C(CI)(CH_3)C_6H_4Br-p$ (83)	236
		NaOH, 50% H ₂ O, C ₄ H ₄ ,	С6Н3СН=СНСНО	$C_6H_5(CH=CH)_2C_6H_4Br-p$ (81)	157
	(C ₂ H ₅ O) ₂ P(O)CH ₂ C ₆ H ₄ Cl- <i>o</i>	(n-C ₄ H ₉) ₄ N ⁺ 1 [−] n-C ₄ H ₉ Li, THF, −70°, 15 min	CCl_4 , -75°, then 70°, 15 min, then <i>i</i> -C ₃ H ₂ CHO, -70°, 30 min,	$i-C_3H_7CH=C(CI)C_6H_4CI-o$ (20)	236
	$(C_2H_3O)_2P(O)CH_2C_6H_4Cl-p$	n-C ₄ H ₉ Li, THF, -70°,	CCl_4 , -75°, then 70°, 15 min,	$(C_2H_3O)_2P(O)CH(Cl)C_6H_4Cl-p$ (85)	236
		· · ·	CCl_4 , -75° , then 70°, 15 min, then CH_3I , -75° , then room temperature CCl_4 , -75° , then 70°, 15 min,	$(C_2H_3O)_2P(O)C(CI)(CH_3)C_6H_4CI-p$ (90)	236
			then		
			S CHO - 70°, 30 min, then room temperature, 60 min	S CH=C(CI)C ₄ H ₄ Cl-p (85)	236
		<i>n-</i> C ₄ H ₉ Li, THF, -70°, 15 min	CCl ₄ , -75°, then 70°, 15 min, then	$C(C)C_{6}H_{4}Cl-p (73)$	236
			CCl_4 , -75°, then 70°. 15 min, then O CHO	CH=C(Cl)C ₆ H ₄ Cl-p (69)	236
			-70°, 30 min, then room temperature,	0	
		1.1	60 min - 70°, 30 min, then room temperature.	$i-C_3H_7CH=C(CI)C_6H_4CI-p$ (80)	236
			60 min, then i-C ₃ H ₇ CHO - 70°, 30 min, then room temperature.	sec-C4H9CH=C(CI)C6H4CI-p (87)	236
	(C2H3O)2P(O)CH2C6H4NO2-p	C2H3ONa;	60 min, then sec-C ₄ H ₉ CHO C ₆ H ₃ CHO	C ₆ H ₅ CH=CHC ₆ H ₄ NO ₂ -p	597
		(CH ₃) ₂ NCHO	p-CH₃OC₀H₄CHO	cis: (2), trans: (75) $p-CH_3OC_6H_4CH=CHC_6H_4NO_{2}-p$	597
	(C2H3O)2P(O)CH2C6H3	n-C4H9Li, THF, -70°,	CCl ₄ , -75°, then 70°, 15 min, then H ₂ O	cis: (0), trans: (16) (C ₂ H ₃ O) ₂ P(O)CH(Cl)C ₆ H ₃ (90)	236
		15 min	CCl_4 , -75°, then 70°, 15 min, <i>i</i> -C ₃ H ₇ CHO, -70°, 30 min, room temperature, 60 min	$i-C_3H_7CH=C(CI)C_6H_5$ (69)	236

No. of C Atoms	Reactant	Base and Conditions	Ouenching Reagent	Product(s) and Yield(s) (%)	Refs.
		-CH11 THE -78°	\$ _20°		25%
(Contd.)	(C2n3O)2r(O)Cn2C6n3	5 min n-C₄H₀Li (1.2 cq), THF, TMEDA,	C ₆ H ₃ CN, reflux, 24 hr	C ₆ H ₅ CH ₂ COC ₆ H ₅ (72)	500
		room temperature NaH, CH ₃ OCH ₂ CH ₂ OCH ₃ ,	C ₆ H ₅ CHO	$C_6H_5CH=CHC_6H_5$ trans (63)	149
		reflux, 30 min t-C4H3OK (2 eq), C6H3CH3, room temperature,	С ₆ H ₅ COC ₆ H ₅ С ₆ H ₅ CH=CHCHO С ₆ H ₅ CHO	$(C_6H_5)_2C=CHC_6H_5$ (78) $C_6H_5CH=CH)_2C_6H_5$ (58) $C_6H_5CH=CHC_6H_5$ (80)	149 149 436
		20 min Room temperature,	С6Н3СН=СНСНО	$C_6H_5(CH=CH)_2C_6H_5$ (80)	436
		30 min Room temperature, 5 hr	C ₆ H ₅ COC ₆ H ₅	$(C_6H_5)_2C = CHC_6H_5 (67)$ CH=CHC_6H_5	436
		r-C ₄ H ₉ OK (3 eq), C ₆ H ₅ CH ₃ , room temperature,	OHCC ₆ H ₄ CHO-p	(78)	436
		$_{1}^{20 \text{ min}}$ r-C ₄ H ₉ OK, C ₆ H ₅ CH ₃ , reflux, 12 hr	C ₆ H ₅ COC ₆ H ₅	$CH = CHC_6H_5$ $(C_6H_5)_2C = CHC_6H_5 (70)$	38
		CH ₃ ONa, (CH ₃) ₂ NCHO, room temperature, 1-2 hr	Сосно	$CH = CHC_{e}H_{s}$ <i>trans</i> (84)	577, 597
			(s) CHO	(77)	577
			СНО	$CH=CHC_{6}H_{5}$ cis: (0), trans: 75	577, 597
			NaBr added m.p-(CH3O)2C6H3CHO, 90° C.H.CHO	cis: (0), trans: (14) C ₆ H ₅ CH=CHC ₆ H ₃ (OCH ₃) ₂ -m.p cis: (0), trans: (92) C.H. CH=CHC, H.	597 597
			P-NO-C-H-CHO	cis: (1), irans: (87) C.H.CH=CHC.H.NOn	577. 597
			p-CH ₃ OC ₆ H ₄ CHO	cis: (8), trans: (36) $C_6H_5CH=CHC_6H_4OCH_3-p$ cis: (0), trans: (100) $CH=CHC_6H_5$	597
			OHCC ₆ H ₄ CHO-p	CH=CHC.H.	597
			p-(CH ₃)₂NC₀H₄CHO	trans (74) $C_6H_3CH=CHC_6H_4N(CH_3)_2-p$	597
			С6Н3СН=СНСНО	trans (80) C ₆ H ₅ CH=CHCH=CHC ₆ H ₅ trans (76)	597
			СНО	CH=CHC ₆ H ₅ trans (59)	597
			СНО	CH=CHC ₆ H ₅	597
		NaNH ₂ (0.5 eq), ether, 10-15°, 1 hr	CHO $C_6H_5CH=NC_6H_4Cl-m$ $C_6H_5CH=NC_6H_4Cl-p$ $C_6H_5CH=NC_6H_4CH_3-o$ $C_6H_5CH=NC_6H_4CH_3-m$ $C_6H_5CH=NC_6H_5$	$CH=CHC_{6}H_{5}$ <i>trans</i> (79) (C,H,50)P(O)CH(C_{6}H_{5})CH(C_{6}H_{5})NHR A, R = C_{6}H_{4}Cl-m (88) A, R = C_{6}H_{4}Cl-p (81) A, R = C_{6}H_{4}CH_{3}-0 (60) A, R = C_{6}H_{4}CH_{3}-m (87) A, (C ₂ H ₃ O) ₂ P(O)CH(C_{6}H_{5})CH(C_{6}H_{5})NHR (77)	473 473 473 473
		NaNH2 (0.5 cq), NH3 (liq)		$ \begin{array}{l} & + \\ B, C_8 H_5 CH = CHC_8 H_5 \\ A : (69), B : (20), R = C_6 H_5 \\ A : (58), B : (<1) (-) \end{array} $	473, 476 473, 476

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C11	(C2H3O)2P(O)CH2C6H3	NaNH ₂ (0.5 eq), ether,	C ₆ H ₃ CH=NC ₆ H ₄ CH ₃ -p	A : (0), B : (16), R = $C_6H_4CH_3-p$	476
(Contd.)		10° NaNH ₂ (1 eq), C ₆ H ₆ ,	C6H3COC6H3 (0.5 eq)	$C_6H_5CH=C(C_6H_5)_2$ (88)	243
		NaNH ₂ , NH ₃ (liq) LiNH ₂ , NH ₃ (liq)	C_6H_5Br $(C_6H_3)_2C=NCOC_6H_5$, ether, -50°, Shi then H.O.*	$(C_2H_5O)_2P(O)CH(C_6H_5)_2$ (23) $(C_2H_5O)_2P(O)CH(C_6H_5)C(C_6H_5)_2NHCOC_6H_5$ (93)	232 135
		LiNH2, ether	$(C_6H_5)_2C=NCOC_6H_5$, ether, -50°, 5 hr then H_O ⁺	$(C_2H_5O)_2P(O)CH(C_6H_5)C(C_6H_5)_2NHCOC_6H_5$ (76)	135
		NaOH, 50% H ₂ O, C ₆ H ₆ , (n-C ₄ H ₉) ₄ N ⁺ 1 ⁻	С6H3CH=СНСНО	C ₆ H ₅ (CH=CH) ₂ C ₆ H ₅ (72)	157
214	CH ₂ P(O)(OC ₃ H ₇ - <i>i</i>) ₂	NaNH ₂ , NH ₃ (liq), 30 min	<i>i</i> -C ₃ H ₇ Br, 2 hr	$\mathcal{L}_{O} = \mathcal{L}_{CHRP(O)(OC_3H,-i)_2}$ A, R = C_3H,-i (90)	485
		Na (2 eq), NH ₃ (liq), 30 min	n-C ₄ H ₉ Br, 2 hr C ₆ H ₃ CH ₂ Cl, 2 hr C ₆ H ₃ Br (2 eq) C ₆ H ₃ Br	A, $R = C_4H_9-\pi$ (93) A, $R = CH_2C_6H_5$ (59) A, $R = C_6H_5$ (37) A, $R = C_6H_5$ (28)	485 485 233 233
	_	NaNH ₂ (2.5 eq), NH ₃ (liq), 30 min	n-C₄H ₉ Br (2.5 eq)	$\bigcup_{O} \underbrace{C(C_4H_{q}-n)_2P(O)(OC_3H_{q}-i)_2}_{C(C_4H_{q}-n)_2P(O)(OC_3H_{q}-i)_2} $ (93)	485
	L _S L _{CH₂P(O)(OC₃H₇-i)₂}	NaNH ₂ (0.5 eq), ether, - 10°	C ₆ H ₅ CH=NC ₆ H ₅	A, ℓ_{S} CH[P(O)(OC ₃ H ₇ -i) ₂]CH(C ₆ H ₃)NHR	
		Ether, 0° NH3 (liq) Ether, 0°	$C_{6}H_{3}CH=NC_{6}H_{4}CI-o$ $C_{6}H_{3}CH=NC_{6}H_{4}CI-p$ $C_{6}H_{3}CH=NC_{6}H_{4}CH_{3}-o$ $C_{6}H_{5}CH=NC_{6}H_{4}CH_{3}-p$	B, S CH=CHC ₆ H ₅ A : (9), B : (0), R = C ₆ H ₅ A : (15), B : (30), R = C ₆ H ₅ A : (75), B : (0), R = C ₆ H ₅ A : (33), B : (-), R = C ₆ H ₄ CL-o A : (60), B : (-), R = C ₆ H ₄ CL-p A : (15), B : (-), R = C ₆ H ₄ CH ₃ -o A : (32), B : (-), R = C ₆ H ₄ CH ₃ -p	477 477 477 477 477 477 477 477
		NaNH ₂ , NH ₃ (liq), 30 min	<i>i</i> -C ₃ H ₇ Br, 2 hr	CHRP(O)(OC,Hi)2	495
			n-C ₄ H ₉ Br, 2 hr C ₆ H ₅ CH ₂ Cl, 2 hr	A, $R = C_3 H_{3^{-1}}$ (90) A, $R = C_4 H_{9^{-1}}$ (91) A, $R = CH_2 C_6 H_5$ (60)	485 485
		NaNH ₂ (2.5 eq), NH ₃ (liq), 30 min	$n-C_4H_9Br$ (2.5 eq)	(95) $C(C_4H_9-n)_2P(O)(OC_3H_7-i)_2$	485
	$(C_2H_5O)_2P(O)CH_2C(CH_3)=CHCO_2C_2H_5$	CH ₃ ONa, (CH ₃) ₂ NCHO	СН=СНС(СН ₃)=СНСНО	(-)	325
C ₁₂	(C ₂ H ₅ O) ₂ P(O)CH ₂ C ₆ H ₄ CH ₃ -o	NaNH ₂ (0.5 eq), NH ₃ (liq), 2 hr	$C_6H_3CH=NC_6H_5$, then NH_4Cl $C_6H_3CH=NC_6H_4Cl-p$ p -ClC_6H_4CH=NC_6H_5 $C_6H_5CH=NC_6H_4CH_3-o$ $C_6H_3CH=NC_6H_2CH_3-m$ $C_4H_2CH=NC_6H_2CH_3-m$	$(C_{2}H_{3}O)_{2}P(O)CH(C_{6}H_{4}CH_{3}-o)R$ A, R = CH(C_{6}H_{3})NHC_{6}H_{5} (68) A, R = CH(C_{6}H_{5})NHC_{6}H_{4}CI-p (47) A, R = CH(C_{6}H_{4}CI-p)NHC_{4}H_{5} (-) A, R = CH(C_{6}H_{5})NHC_{6}H_{4}CH_{3}-o (-) A, R = CH(C_{6}H_{5})NHC_{6}H_{4}CH_{3}-m (29) A, R = CH(C_{6}H_{5})NHC_{6}H_{4}CH_{3}-m (29)	475 475 475 475 475 475
	(C ₂ H ₅ O) ₂ P(O)CH ₂ C ₆ H ₄ CH ₃ -p	NaNH2, NH3 (liq)	$C_6H_5CH=NC_6H_5$, ether, -33°	$(C_3H_3O)_2P(O)CH(C_6H_4CH_3\cdot p)CH(C_6H_5)NHC_6H_5$ erythro (47), three (2)	474
215				$C_6H_3CH = CHC_6H_4CH_3-p$ trans (10)	
		NaNH2 (0.5 eq), NH3 (liq) NaNH2 (0.5 eq), ether,	C ₆ H ₃ CH=NC ₆ H ₄ CH ₃ - <i>o</i> C ₆ H ₃ CH=NC ₆ H ₄ CH ₃ - <i>o</i>	$(C_{2}H_{3}O)_{2}P(O)CHR(C_{6}H_{4}CH_{3}-p)$ A, R = CH(C_{6}H_{3})NHC_{6}H_{4}CH_{3}-o (47) A, R = CH(C_{6}H_{3})NHC_{6}H_{4}CH_{3}-o (70)	475 475
	(C ₂ H ₃ O) ₂ P(O)CH(C ₆ H ₃)SCH ₃	$\begin{array}{r} -33^{\circ}, 2.5 \ hr \\ -33^{\circ}, 3.5 \ hr \\ 10^{\circ}, 75 \ min \\ -33^{\circ}, 2 \ hr \\ 10^{\circ}, 1.5 \ hr \\ 10^{\circ}, 1.5 \ hr \\ -33^{\circ}, 2.5 \ hr \\ 0^{\circ}, 24 \ hr \\ -33^{\circ}, 2.5 \ hr \\ 10^{\circ}, 105 \ min \\ -33^{\circ}, 4.5 \ hr \\ 10^{\circ}, 5 \ hr \\ n-C_4 \ H_9 \ Li, THF, -78^{\circ}. \\ 5 \ min \end{array}$	p-ClC ₆ H ₄ CH=NC ₆ H ₅ p-ClC ₆ H ₄ CH=NC ₆ H ₅ C ₆ H ₅ CH=NC ₆ H ₄ Cl- p C ₆ H ₅ CH=NC ₆ H ₄ Cl- p C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ - o C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ - o C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ - m C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ - m C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ - p C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ - p C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ - p C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ - p C ₆ H ₅ CHO, reflux	A. R = CH(C ₆ H ₄ Cl-p)NHC ₆ H ₅ (72) A. R = CH(C ₄ H ₄ Cl-p)NHC ₆ H ₅ (73) A. R = CH(C ₆ H ₄ Cl-p)NHC ₆ H ₄ Cl-p (77) A. R = CH(C ₆ H ₅)NHC ₆ H ₄ CH ₂ -p (76) A. R = CH(C ₆ H ₅)NHC ₆ H ₄ CH ₃ -o (68) A. R = CH(C ₆ H ₅)NHC ₆ H ₄ CH ₃ -o (28) A. R = CH(C ₆ H ₅)NHC ₆ H ₄ CH ₃ -m (70) A. R = CH(C ₆ H ₅)NHC ₆ H ₄ CH ₃ -m (43) A. R = CH(C ₆ H ₅)NHC ₆ H ₄ CH ₃ -m (43) A. R = CH(C ₆ H ₅)NHC ₆ H ₄ CH ₃ -p (25) C ₆ H ₅ CH=CHC ₆ H ₄ CH ₃ -p (15) C ₆ H ₅ CH=CHC ₆ H ₅)SCH ₃ (E): 11. (Z): 89 (80)	475 475 475 475 475 475 475 475 475 475
	CH ₂ P(O)(OC ₃ Hi) ₂	NaNH2, NH3 (liq), 30 min	í-C ₃ H ₇ Br, 2 hr	$N = CHRP(O)(OC_3H_{7}-i)_2$ A, R = C_3H_{7}-i (90)	485

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₂ (Contd.)	CH ₂ P(O)(OC ₁ H ₇ -i) ₂	NaNH ₂ , NH ₃ (liq), 30 min	n-C₄H₀Br, 2 hr C₀H₅CH₂Cl, 2 hr	A, R = $C_4 H_9 - n$ (94) A, R = $C H_2 C_6 H_5$ (88)	485 485
			NaNH ₂ (2.5 eq), NH ₂ (lig), 30 min	n-C4H9Br (2.5 eq)	(89)	485
		$(C_2H_5O)_2P(O)CH_2CH=CHCH_2P(O)(OC_2H_5)_2$	CH ₃ ONa (2 eq) t-C ₄ H ₉ OK (3 eq), C ₆ H ₅ CH ₃ ,	(C ₂ H ₃ O) ₂ CHCOCH ₃ (2 eq) C ₆ H ₃ CH=CHCHO	$ \begin{array}{l} (C_2H_3,n)_2P(O)(OC_3H_3,n)_2 \\ (C_2H_3O)_2CHC(CH_3) = CHCH = CHCH = C(CH_3)CH(OC_2H_3)_2 (-) \\ C_6H_3(CH = CH)_5C_6H_3 (5) \end{array} $	323 436
216	C ₁₃	(C ₂ H ₅ O) ₂ P(O)CH ₂ CH=CHC ₆ H ₅	room temperature, 3 hr Reflux, 6 hr CH ₃ ONa, (CH ₃) ₂ NCHO, room temperature, 1.2 hr	С ₆ H ₃ CH=CHCHO С ₆ H ₃ COC ₆ H ₃ С ₆ H ₃ CHO	$C_{b}H_{3}(CH=CH)_{5}C_{b}H_{3} (20)$ $(C_{b}H_{5})_{2}C=CHCH=CHCH=C(C_{b}H_{5})_{2} (61)$ $C_{b}H_{3}(CH=CH)_{2}C_{b}H_{3}$ trans (-)	436 436 597
			r-C4H9OK, C2H3OH	Сно	(38) (CH=CH) ₂ C ₈ H ₅	157
				Сно сно	$(CH=CH)_2C_6H_5$ $(CH=CH)_2C_4H_5$ $(CH=CH)_2C_4H_5$	157
				Сно	(59) (CH=CH) ₂ C ₆ H ₃	157
					(52)	157
			NaOH, 50% H2O, C6H6. (n-C4H9)4N*1-	СНО	$C_{a}H_{5}(CH=CH)_{2}C_{a}H_{4}NO_{2}-\rho (59)$ $C_{0}CH=CH)_{2}C_{a}H_{5} (84)$	157
				СНО	$(CH=CH)_2C_6H_5$ $(CH=CH)_2C_6H_5$ $(CH=CH)_2C_6H_5$ (12)	157
						157
		(n-C ₃ H ₇ O) ₂ P(O)CH ₂ C ₆ H ₅	NaNH2, NH3 (liq)	$p-O_2NC_6H_4CHO$ $C_6H_3CH=CHCHO$ C_6H_3Br	$C_{6}H_{3}(CH=CH_{2}C_{6}H_{3}, (-V))$ (55) $C_{6}H_{3}(CH=CH_{3}C_{6}H_{3}, (80))$ $(n-C_{3}H_{2}O)_{2}P(O)CHRC_{6}H_{3}$ $A = C = C, H_{2}$ (21)	157 157 232
		(i-C ₃ H ₇ O) ₂ P(O)CH ₂ C ₆ H ₅	LiNH ₂ , NH ₃ (liq) 5 hr, then H ₃ O ⁺ NaNH ₂ (0.5 eq), NH ₃ (liq) NaNH ₂ (0.5 eq), ether, $10, 15^{\circ}$ L br	$(C_6H_5)_2C=NCOC_6H_5$, ether, -50° , 5 hr, then H_3O° $C_6H_3CH=NC_6H_5$ $C_6H_5CH=NC_6H_5$	A, $R = C(C_6H_3)_2NHCOC_6H_5$ (65) (i-C_3H_7O)_2P(O)CHRC_6H_5 A, $R = CH(C_6H_5)NHC_6H_5$ (85) A, $R = CH(C_6H_5)NHC_6H_5$ (64)	135 477 473
217			LiNH ₂ NH ₃ (liq)	$C_{6}H_{3}CH=NC_{6}H_{4}Cl-m$ $C_{6}H_{3}CH=NC_{6}H_{4}Cl-p$ $C_{6}H_{3}CH=NC_{6}H_{4}CH_{3}-o$ $C_{6}H_{3}CH=NC_{6}H_{4}CH_{3}-m$ $C_{6}H_{3}CH=NC_{6}H_{4}CH_{3}-p$ $(C_{6}H_{3})_{2}C=NCOC_{6}H_{3}$, ether, -50°,	A, R = CH(C ₆ H ₃)NHC ₆ H ₄ Cl- <i>m</i> (59) A, R = CH(C ₆ H ₃)NHC ₆ H ₄ Cl- <i>p</i> (73) A, R = CH(C ₆ H ₃)NHC ₆ H ₄ CH ₃ - σ (52) A, R = CH(C ₆ H ₃)NHC ₆ H ₄ CH ₃ - π (52) A, R = CH(C ₆ H ₃)NHC ₆ H ₄ CH ₃ - π (33) A, R = C(C ₆ H ₃) ₂ NHCO ₆ H ₅ (55)	473 473 473 473 473 135
			LiNH ₂ , NH ₃ (liq),	5 hr, then H ₃ O ⁺ C ₆ H ₅ Br	$\mathbf{A}, \mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{5} (6)$	232
			Fe(NO ₃) ₃ (cat) KNH ₂ , NH ₃ (liq),		A, $R = C_6 H_5$ (17)	232
			$Fe(NO_3)_3$ (cat) NaNH ₂ , NH ₃ (liq),	C ₆ H ₅ Br (30 min)	$(i-C_3H_7O)_2P(O)CH(C_6H_5)_2$ (21)	232
			Fe(NO ₃) ₃ (cat), 30 min		$(i-C_3H_7O)_2P(O)CH_2C_6H_5$ (62)	
		CH(C4H9-7)P(O)(OC2H3)2	NaNH2 (1 eq), NH3 (liq)	ŀ-C3H3Br	$C_{e}H_{5}NH_{2} (36)$ $O C(C_{a}H_{9}-n)RP(O)(OC_{2}H_{5})_{2}$ $A, R = C_{3}H_{7}-i (91)$	485
	C.,	(C,H,O),P(O)CH,C,H,CO,C,H,-D	C,H,ONa, C,H,OH.	C ₆ H ₅ CH ₂ Cl C ₆ H ₅ CHO	$A, R = CH_2C_6H_5 (89)$ $C_6H_4CH=CHC_6H_4CO_2C_2H_{5}-p$	485 597
		/~13-11-/~1/2-12-0-22-13-F	reflux C ₂ H ₃ ONa, (CH ₃) ₂ NCHO	P-O₂NC ₆ H₄CHO	trans (78.5) $p-O_2NC_6H_4CH=CHC_6H_4CO_2C_2H_5-p$ cis: (1.9), trans: (63.5)	597

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C14	(C2H5O)2P(O)CH2C6H4CO2C2H5-p	C2H3ONa.	₽-CH₃C₀H₄CHO	p-CH ₃ C ₆ H ₄ CH=CHC ₆ H ₄ CO ₂ C ₂ H ₅ -p	597
		(Ch3)2NCHO	C ₆ H ₅ CH=CHCHO	$C_6H_5CH=CHCH=CHC_6H_4CO_2C_2H_5-p$	597
	(i-C ₃ H ₇ O) ₂ P(O)CH ₂ C ₆ H ₄ CH ₃ -p	NaNH ₂ (0.5 eq), (liq) NaNH ₂ (0.5 eq), ether, -33°, 2 hr	C ₆ H ₅ CH=NC ₆ H ₅	$(i-C_3H_{00})_P(O)CH(C_6H_4CH_3-p)CH(C_6H_5)NHR$ A, R = C ₆ H ₅ (71) A, R = C ₆ H ₅ (76)	475 475
	~	10°, 2 hr - 33°, 4 hr 10°, 4.5 hr	C ₆ H ₅ CH=NC ₆ H ₄ CH ₃ -p	A, $R = C_6 H_5$ (69) A, $R = C_6 H_4 C H_3 p$ (76) $C_6 H_5 C H = C H C_6 H_4 C H_3 p$ (18)	475 475 475
218	CH(C ₄ H ₉ -n)P(O)(OC ₂ H ₃) ₂	NaNH2 (1 cq), NH3 (liq)	<i>i</i> -C ₃ H ₇ Br	$\sum_{\mathbf{A},\mathbf{B}} \sum_{\mathbf{C} \in \mathbf{L}, \mathbf{H}_{q}, \mathbf{\eta} \in \mathbf{R}(\mathbf{O})(\mathbf{OC}_{2}\mathbf{H}_{q})_{2}} \mathbf{A} = \sum_{\mathbf{C} \in \mathbf{H}_{q}, \mathbf{\eta} \in \mathbf{C}(\mathbf{C}_{q})} \mathbf{C}_{q} \mathbf{C}$	485
	~ ~		C ₆ H ₅ CH ₂ Cl	A, $R = CH_2C_6H_5$ (91)	485
C15	CH ₂ P(0)(OC ₂ H ₅) ₂	r-C ₄ H ₉ OK (2.2 cq), C ₆ H ₆	O ₂ , 3 hr		435
		CH3ONa, (CH3)2NCHO			
	(n-C4H9O)2P(O)CH2C6H5	NaNH2, NH3 (liq)	C ₆ H ₅ Br	cis: (6), trans: (67) $(n-C_4H_9O)_2P(O)CH(C_6H_5)_2$ (18)	597 232
	(sec-C ₄ H ₉ O) ₂ P(O)CH ₂ C ₆ H ₅	LiNH ₂ , ether	$(C_6H_5)_2C = NCOC_6H_5$, ether, -50°, 5 hr, then H_3O^+	$(sec-C_4H_9O)_2P(O)CHRC_6H_5$ A, R = C(C_6H_3)_2NHCOC_6H_5 (58)	135
	$\bigcup_{O} CH(C_4H_9 \cdot n)P(O)(OC_3H_7 \cdot i)_2$	NaNH ₂ (1 cq), NH ₃ (liq)	i-C ₃ H ₇ Br	$A, R = C_6 H_3^{-1} (10)$ $C(C_4 H_6 - n) RP(O) (OC_3 H_7 - i)_2$ $A, R = C_3 H_7 - i (92)$	485
	$\int_{S} \mathcal{L}_{CH(C_4H_{9}-n)P(O)(OC_3H_{7}-i)_2}$	NaNH2 (1 eq), NH3 (liq)	C ₆ H ₃ CH ₂ Cl I-C ₃ H ₇ Br C ₆ H ₃ CH ₂ Cl	A. R = CH ₂ C ₆ H ₃ (88) S A. R = C ₃ H ₇ - <i>i</i> (97) A. R = C ₄ H ₇ - <i>i</i> (97) A. R = CH ₂ C ₄ H ₃ (91)	485
C ₁₆	CH ₂ P(O)(OC ₂ H ₃) ₂ CH ₂ P(O)(OC ₂ H ₃) ₂	CH ₃ ONa, (CH ₃) ₂ NCHO, 0°, 1 hr		(22)	602
		Room temperature, 1-2 hr	C6H3CHO	CH=CHC ₆ H ₅	597
	CH ₂ P(0)(OC ₂ H ₅) ₂				
		CH ₃ ONa, (CH ₃) ₂ NCHO	p-CH ₃ OC ₆ H ₄ CHO		597
219	CH₂P(O)(OC₂H₅)₂			$CH = CHC_*H_4OCH_{3^{-p}}$ trans (41) $CH = CHC_6H_4N(CH_3)_2 \cdot p$	
		CH3ONa, (CH3)2NCHO	p-(CH ₃) ₂ NC ₆ H ₄ CHO	\bigcirc	597
				$CH=CHC_6H_4N(CH_3)_2-p$ $rans (78)$ $CH=C(C_6H_3)_2$	
		r-C4H9OK (3 eq), C6H3CH3, room temperature, 5 hr	C ₆ H ₃ COC ₆ H ₃	(62) $CH=C(C_6H_5)_2$ $CH=CHC_6H_4N(CH_3)_2 \cdot p$	436
		Room temperature, 20 min	p-(CH ₃) ₂ NC ₆ H ₄ CHO	CH=CHC ₆ H ₄ N(CH ₃) ₂ ·p	436

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
		$CH_2P(O)(OC_2H_3)_2$			CH=CHC ₆ H ₄ C ₆ H ₅ -p	
	C ₁₆ (Conid.)	\Diamond	Room temperature, 20 min	₽-C ₆ H ₅ C ₆ H ₄ CHO	(83)	436
220		ĊH ₂ P(O)(OC ₂ H ₃) ₂	Reflux, 7 hr	CHO N	$CH=CHC_{6}H_{4}C_{6}H_{5}-p$ $CH=CH$ $CH=CHC_{6}H_{5}$ (62)	436
			Reflux, 8 hr	C&H3CHO	(69)	436
			Reflux, 7 hr	С₀Н₅СН≕СНСНО	$CH=CHC_{6}H_{3}$ $(CH=CH)_{2}C_{6}H_{3}$ (84)	436
			Reflux, 7 hr	CHO	-CH=CH-CH-	436
			Reflux, 7 hr	СНО	$CH=CHC_{\bullet}H_{\bullet}C_{\bullet}H_{\bullet}-p$ (68)	436
			Reflux, 8 hr	₽-C ₆ H ₅ C ₆ H ₄ CHO	(92)	436
			Reflux, 8 hr	()°	$CH = CHC_6H_4C_6H_{5^{-p}}$ $CH = CHC_6H_4C_6H_{5^{-p}}$ (65)	436
221			Reflux, 9 hr	ý.		436
			NaH, CH ₃ OCH ₂ CH ₂ OCH ₃ ,	C ₆ H ₅ CHO	$C_6H_5CH=CHC_6H_4[(CH=CHC_6H_5)]-\rho$ (63)	149
			reflux, 30 min	C ₆ H ₃ CH=CHCHO	$C_{6}H_{5}(CH=CH)_{2}C_{6}H_{4}[(CH=CH)_{2}C_{6}H_{5}]-p (32)$	149
	(0	C ₁ H ₃ O) ₂ P(O)CH ₂ CO ₂ C ₂ H ₃	C2H3ONa, C2H3OH, 35°, 3 hr	с,н,о,с	C ₂ H ₃ O ₂ C (50)	569
			NaNH2 (1 eq), NH3 (liq)	i-C ₃ H ₇ Br	$\left(\sum_{\mathbf{N} \in \mathcal{O}(\mathbf{C}_{s} \mathbf{H}_{s} \cdot \mathbf{n}) \mathbb{R} P(\mathbf{O})(\mathbf{O}\mathbf{C}_{s} \mathbf{H}_{s} \cdot \mathbf{i}), \right)$	
		enter a tradicition of		C6H3CH3CI	A. $R = C_3 H_7 - i$ (89) A. $R = CH_2 C_6 H_5$ (85)	485 485

TABLE XXIV. PHOSPHONATES (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C1,	(C ₆ H ₃ O) ₂ P(O)CH ₂ CH=CHCO ₂ CH ₃	r-C ₄ H ₉ OK, C ₆ H ₅ CH ₃ , reflux, 10 hr	C ₆ H ₃ CHO	$C_6H_3CH=CHCH=CHCO_2H$ (52)	38
	P(O)(OC,H ₄) ₂	NaH, CH ₃ OCH ₂ CH ₂ OCH ₃ , 25°, 30°	CH₂O	CH ₂ (77)	149
			с₽н°сно	(80)	149
	(n-C ₃ H ₁₁ O) ₂ P(O)CH ₂ C ₆ H ₅ (sec-C ₃ H ₁₁ O) ₂ P(O)CH ₂ C ₆ H ₅	NaNH2, NH3 (liq) NaNH2, NH3 (liq)	C ₆ H ₃ Br C ₆ H ₃ Br	CHC_6H_3 (<i>n</i> -C_3H_1,O)_2P(O)CH(C_6H_5)_2 (20) (<i>sec</i> -C_3H_1,O)_2P(O)CH(C_6H_5)R	232 233
		LiNH2, NH3 (liq)	$(C_6H_3)_2C=NCOC_6H_5$, ether, -50°, 5 hr, then H_3O^+	$A, \mathbf{R} = C_6 \mathbf{A}_3 (20)$ $A, \mathbf{R} = C(C_6 \mathbf{H}_3)_2 \text{NHCOC}_6 \mathbf{H}_3 (59)$	235
C ₁₈	(C ₂ H ₃ O) ₂ P(O)CH ₂ C(CH ₃)=CHC≡C− CH=C(CH ₃)CH ₂ P(O)(OC ₂ H ₃) ₂	NaOCH ₃ (2 eq)	CH=CHC(CH ₃)=CHCHO (2 eq)		
			\langle	CH=CHC(CH ₃)=CH] ₂ C≡C[CH=C(CH ₃)CH=CH] ₂ (-)	323

TABLE XXV. PHOSPHINODITHIOATES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C	(C ₆ H ₅) ₂ P(S)SCH ₂ CH=CH ₂	$n-C_4H_9Li$, THF, -78°	s 	$CH_2 = CHCH_2SC_4H_9-n$ (63)	415
-13		C ₆ H ₅ Li, room temperature		$C_6 \hat{H}_5 SCH_2 CH = CH_2$ (72)	415
C ₁₉	(C ₆ H ₅) ₂ P(S)SCH ₂ C ₆ H ₅	$n-C_4H_9Li$, THF	CH3I	$n-C_4H_9SCH_2C_6H_5$ (-)	50
				$(C_6H_5)_2P(S)CH_3$ (-)	
		C_6H_5Li , -78° , room temperature	-	$C_6H_5SCH_2C_6H_5$ (79)	415
		C ₆ H ₅ Li, room temperature	-	$C_6H_5SCH_2C_6H_5$ (60)	415

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₈	$(C_{2}H_{3}O)_{2}P(O)N(CH_{3})CH_{2}C\equiv CH$ $(C_{2}H_{3}O)_{2}P(O)N(CH_{3})CH=C=CH_{2}$ $[(CH_{3})_{2}N]_{2}P(O)N(CH_{3})CH_{2}CH=CH_{2}$	NaH, THF, reflux, 1.5 hr n-C4H9Li, THF n-C4H9Li, THF, -50°, 1.5 hr		$(C_2H_3O)_2P(O)N(CH_3)CH=C=CH_2$ (100) $(C_2H_3O)_2P(O)N(CH_3)C(CH_2C_6H_5)=C=CH_2$ (80) A, [(CH_3)_2N]_2P(O)N(CH_3)CH(R)CH = CH_2	373 373
			CH ₃ SSCH ₃ C ₂ H ₃ SSC ₂ H ₃ n-C ₄ H ₃ SSC ₄ H ₉ -n C ₆ H ₃ SSC ₆ H ₃ n-C ₆ H ₁ ,Br C ₆ H ₃ CH ₂ Cl ClCH ₂ C ₆ H ₄ Cl-o ClCH ₂ C ₆ H ₄ Cl-p	+ + B, [(CH ₃) ₂ ,N] ₂ P(O)N(CH ₃)CH=CHCH ₂ R A: 40, B: 60, R = H (-) A: 25, B: 75, R = SCH ₃ (-) A: 0, B: 1, R = SC ₄ H ₂ -n (-) A: 0, B: 1, R = SC ₄ H ₂ -n (-) A: 0, B: 1, R = C ₄ H ₃ -n (-) A: 0, B: 1, R = C ₄ H ₃ -n (-) A: 0, B: 1, R = CH ₂ C ₆ H ₃ (-) A: 0, B: 1, R = CH ₂ C ₆ H ₄ Cl-p (-) A: 0, B: 1, R = CH ₂ C ₆ H ₄ Cl-p (-)	265 26 26 26 265 265 265 265 265
Co	$(C_1H_2O_2P(O)N(C_1H_2CH_2C\equiv CH (C_1H_2O_2P(O)N(CH_3)C(CH_2)=C=CH_2 (CH_3)_2P(O)N(CH_3)CH_2C(CH_3)=CH_2 (CH_3)_2P(O)N(CH_3)CH_2C(CH_3)=CH_2 (CH_3)_2P(O)N(CH_2C(CH_2)=CH_2)$	NaH, THF, reflux, 1.5 hr n-C ₄ H ₉ Li, THF n-C ₄ H ₉ Li, THF, - 50°, > 1.5 hr	— С ₆ Н₃СН₂СІ С ₆ Н₃СН₂СІ	$\begin{array}{l} (C_2H_3O)_2P(O)N(C_2H_3)CH=C=CH_2 (100) \\ (C_2H_3O)_2P(O)N(CH_3)C(CH_3)=C=CHCH_3C_6H_3 (50) \\ A, [(CH_3)_2N]_2P(O)N(CH_3)CHRC(CH_3)=CH_2 \\ + \end{array}$	373 373
	[(CH ₃) ₂ N] ₂ P(O)N(CH ₃)CH ₂ CH=CHCH ₃	n-C4H9Li, THF, −50°,	CH ₃ SSCH ₃ n-C ₄ H ₉ SSC ₄ H ₉ -n C ₆ H ₃ SSC ₆ H ₃ (CH ₃) ₂ CHCH ₂ CH ₃ Br	B, $[(CH_3)_2N]_2P(O)N(CH_3)CH=C(CH_3)CH_2R$ A: 0, B: 1, R = CH_2C_8H_5 (-) A: 25, B: 75, R = SCH_3 (-) A: 0, B: 1, R = SC_4H_9-n (-) A: 0, B: 1, R = SC_6H_5 (-) A, $[(CH_3)_2N]_2P(O)N(CH_3)CHRCH=CHCH_3$	265 26 26 26
212	(C ₂ H ₅ O) ₂ P(O)N(CH ₃)CH ₂ C ₆ H ₅	71.5 m n-C₄H₀Li (1 eq), THF, -70°	C ₆ H ₃ CH ₂ Cl CH ₃ SSCH ₃ n-C ₄ H ₉ SSC ₄ H ₉ -n H ₂ O	$ \begin{array}{l} & \underset{(CH_{3})_{2}N_{3}^{2}P(O)N(CH_{3})CH=CHCH(CH_{3})R \\ A:0, B:1, R = CH_{2}CH_{2}CH(CH_{3})_{2} (-) \\ A:0, B:1, R = CH_{3}C_{H_{3}} \\ A:25, B:75, R = SCH_{3} (-) \\ A:0, B:1, R = SC_{4}H_{9} \cdot \pi (-) \\ (C_{2}H_{3}O)_{2}P(O)N(CH_{3})CH_{2}C_{6}H_{5} (-) \\ & + \\ CH_{3}N=CHC_{6}H_{4} (-) \end{array} $	265 265 26 26 28
				⁺ СН ₃ NHCH(C ₆ H ₅)C ₄ H ₉ -π (−)	
		n-C₄H₂Li (2 eq), THF, - 70°	H₂O	CH ₃ N=CHC ₆ H ₅	28
		n-C4H6Li (2 eq), THF, -70°,	H ₂ O	$CH_3NHCH(C_6H_3)C_4H_9-n$ (-) $CH_3NHCH(C_6H_4)C_6H_9-n$ (-)	28
	(C ₂ H ₅ O)[(CH ₃) ₂ N]P(O)N(CH ₃)CH ₂ C ₆ H ₅	inverse addition n-C ₄ H ₉ Li, THF, -75°, 1.5 hr	сн,снсн,	(C ₂ H ₃ O)[(CH ₃) ₂ N]P(O)N(CH ₃)CH(C ₆ H ₃)CH ₂ CH(OH)CH ₃ (8	5) 185
			C ₆ H ₃ CH=NCH ₃ , 20 hr, -0°	$\begin{array}{c} C_{6}H_{5} \\ CH_{3}N \\ P \\ O \\ C_{6}H_{3} \\ R \end{array}$ $\begin{array}{c} C_{6}H_{5} \\ N(CH_{3})_{2} \\ R \end{array}$ (22)	185
			CH ₃ CHO, - 78°, then 30 min, room temperature	CH _J N _P O N(CH _J)	185
			t-C4H4CHO C6H3CHO P-CIC6H4CHO o-CH3OC6H4CHO p-CH3OC6H4CHO p-CH3OC6H4CHO	A, R = H, R' = CH ₃ (78) A, R = H, R' = C ₄ H ₉ -t (65) A, R = H, R' = C ₆ H ₉ -t (68) A, R = H, R' = C ₆ H ₄ OCH ₃ - σ (38) A, R = H, R' = C ₆ H ₄ OCH ₃ - σ (39)	27, 185 27, 185 27, 185 27, 185 27, 185 27, 185
			\sim	A, R = R' = (CH ₂) ₄ (41)	185
			C ₆ H ₃ COC ₆ H ₃ C ₆ H ₃ COC ₆ H ₄ CH ₃ -p C ₆ H ₃ N=CHC ₆ H ₃ , 2 hr,	A, R = R' = C ₆ H ₅ (80) A, R = C ₆ H ₅ , R' = C ₆ H ₄ CH ₃ - p (69) (C ₂ H ₅ O)[(CH ₃) ₂ N]P(O)N(CH ₃)CH(C ₆ H ₅)CH(C ₆ H ₅)NHC ₆ H ₅	27, 185 185 185
	[(CH ₃) ₂ N] ₂ P(O)N(CH ₃)CH ₂ C ₆ H ₅	<i>n</i> -C₄H ₉ Li, THF, −78°, 1.5 hr	-30° , then 0°, 3 hr $CH_{3}I$ $CICH_2OCH_3$ $i-C_3H_3I$ $CH_2=CHCH_2Br$ $n-C_4H_2Br$ CH_2CHCH_3	$[(CH_3)_2N]_2P(O)N(CH_3)CHRC_6H_5 $ A, R = CH_3 (100) A, R = CH_2OCH_3 (100) A, R = CH_2OCH_3 (100) A, R = C_3H_7-i (80) A, R = CH_2CH=CH_2 (80) A, R = CH_2CH(OH)CH_3 (91) (75)	185 185 185 185 185 185
			Сн,сно	$A, R = CH(OH)CH_{1}$ (76)	185

TABLE XXVI. PHOSPHORAMIDES

TABLE XXVI. PHO	SPHORAMIDES (Continued)
-----------------	-------------------------

No. of C Atoms	Reactant	Base and Conditions	Ouenching Reagent	Product(s) and Yield(s) (%)	Refs
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
C ₁₂ (Contd.)	[(CH ₃ ) ₂ N] ₂ P(O)N(CH ₃ )CH ₂ C ₆ H ₅	<i>n</i> -C ₄ H ₉ Li, THF, -78°, 1.5 hr	Сно	A, R = (CH(OH)) (70)	185
			()	A, R = (81)	185
			C,H,CHO	$A, R = CH(OH)C_{A}H_{A}$ (89)	185
			p-CIC ₆ H ₄ CHO p-CH ₃ OC ₆ H ₄ CHO	A, R = CH(OH)C ₆ H ₄ Cl- $p$ (87) A, R = CH(OH)C ₆ H ₄ OCH ₃ - $p$ (83)	185 185
			б сно	A, R = CH(OH) - (83)	185
					10000
				No reaction	185
			()	A, R = (55)	185
			C ₆ H ₅ COCH ₃ C ₄ H ₅ COC ₄ H ₅	A, R = C(OH)(C ₆ H ₅ )CH ₃ (49) A, R = C(OH)(C ₆ H ₅ ) ₂ (86)	185 185
			( )	A. R = (60)	185
				но	
			$C_6H_5COC_6H_4CH_3-p$ $C_6H_5CH=NC_6H_5, -20^\circ,$	A, R = C(OH)(C ₆ H ₅ )(C ₆ H ₄ CH ₃ - $p$ ) (82) A, R = CH(C ₆ H ₅ )NHC ₆ H ₅ (80)	185 185
			p-CH ₃ OC ₆ H ₄ CH=NC ₆ H ₅	A, $R = CH(C_6H_4OCH_3-p)NHC_6H_5$ (92)	185
			-20°, 3 hr C ₆ H ₅ CH=NCH ₃ , -78°, 20 hr	$A, R = CH(C_6H_5)NHCH_3  (40)$	185
				C.H. C.H.	
			- 50°, 20 hr	CH ₃ N _P NCH ₃ (46)	185
				О N(CH ₃ ) ₂ С ₆ H ₃ С ₆ H ₄ OCH ₃ -р	
			p-CH ₃ OC ₆ H ₄ CH=NCH ₃ ,	CH3N NCH3 (49)	185
			- 50°, 20 m	O ^F N(CH ₃ ) ₂	
		<i>n</i> -C ₄ H ₉ Li, THF, -70°	C ₆ H ₅ COCH ₃ , H ₂ O	[(CH ₃ ) ₂ N] ₂ P(O)N(CH ₃ )-ÇÇOH (-)	286
				н с́н, +	
				$C_6H_5 CH_3$ I = I $I = -0H_1 (-)$	
				H C ₆ H ₃	
C14	$(C_2H_3O)_2P(O)N(CH_2C_6H_3)CH_2C\equiv CH$ $[(CH_3)_2N]_2P(O)N(CH_3)CH_2CH=CHC_6H_3$	NaH. THF, reflux, 1.5 hr n-C ₄ H ₉ Li, THF,	CH ₃ I or (CH ₃ ) ₂ SO ₄	$(C_2H_3O)_2P(O)N(CH_2C_6H_5)CH=C=CH_2$ (100) [(CH_3)_2N]_2P(O)N(CH_3)CH=CHCHRC_6H_5 (A)	373
	a da serie de la construcción de la	- 50°, 1.5 hr	CH ₂ =CHCH ₂ Br	A, $R = CH_3$ (-) A, $R = CH_2CH=CH_2$ (-)	265 265
			i-C ₃ H ₇ Cl CH ₃ SSCH ₃	A, $R = C_3 H_7 \cdot i$ (-) A, $R = SCH_3$ (-)	265 26

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₈	SeCH ₂ CH=CH ₂	LDA, THF	CH ₃ I	A, SeCHRCH=CH ₂	
228	C,	C ₆ H ₅ SeCH ₂ C≡CH	C ₂ H ₅ ONa (0.1 eq), C ₂ H ₅ OH, 48°, 70 min <i>t</i> -C ₄ H ₉ OK, CH ₃ SOCH ₃ ,	(CH ₃ ) ₃ SiCl	B, SeCH=CHCH ₂ R A: 70, B: 30, R = CH ₃ (-) A: 60, B: 40, R = Si(CH ₃ ) ₃ (-) C ₆ H ₅ SeCH=C=CH ₂ (59) C ₆ H ₅ SeC=CCH ₃ (45)	144 144 61, 538 61
		C ₆ H ₅ SeCH ₂ CH=CH ₂	$83^\circ$ , 1 hr t-C ₄ H ₉ OK, CH ₃ SOCH ₃ , room temperature, 5 hr LDA, THF, -78°, 10 min	C ₆ H ₅ (CH ₂ ) ₃ Br	$C_{6}H_{5}SeCH=CHCH_{3}  (91)$ trans A, C_{6}H_{5}SeCHRCH=CH_{2} +	460
				(CH ₃ ) ₃ SiCl, -78°, 15 min (CH ₃ ) ₂ C ₆ H ₅ SiCl	B, $C_6H_5SeCH=CHCH_2R$ A: 80, B: 20, $R = (CH_2)_3C_6H_5$ (-) A: 82, B: 18, $R = Si(CH_3)_3$ (-) A: 41, B: 59, $R = Si(CH_3)_2C_6H_5$ (-)	144 144 144
	C ₁₀	C ₆ H ₅ SeCH(CH ₃ )C≡CH	<i>t</i> -C ₄ H ₉ OK (0.1 eq), <i>t</i> -C ₄ H ₉ OH, 85°, 1 hr	C ₆ H ₅ ČOČH ₃	A: 15, B: 85, $R = C(OH)(CH_3)(C_6H_5)$ (-) $C_6H_5SeC(CH_3)=C=CH_2$ (72)	144 61, 538
		C ₆ H ₅ SeCH ₂ CH=CClCH ₃ cis, trans	LDA, THF, $-78^{\circ}$ , $< 5 \text{ min}$	$C_6H_5CH_2Br,$ -78°, < 15 min	A, $C_6H_3$ SeCHRCH=CCICH ₃ + B, $C_6H_3$ SeCH=CHCCI(CH ₃ )R (unstable)	
					$A, R = CH_2C_6H_5  (-)$	144
			LDA, THF, - 78°, 5 min	C ₆ H ₅ CH ₂ CH ₂ Br (CH ₃ ) ₂ C ₆ H ₅ SiCl CH ₂ CHCH ₃	A, R = $CH_2CH_2C_6H_5$ (-) A, R = $Si(CH_3)_2C_6H_5$ (-) A, R = $CH_2CH(OH)CH_3$ (-)	144 144 144
	C11	C ₆ H ₅ SeCH ₂ CH=C(CH ₃ ) ₂	LDA, THF, 0°, 20 min	(CH ₃ ) ₂ C ₆ H ₅ SiCl, -78°, 15 min	A, C ₆ H ₅ SeCH[SiC ₆ H ₅ (CH ₃ ) ₂ ]CH=C(CH ₃ ) ₂ + $^+$ CHC(CH ₃ ) [SiC ₄ H ₅ (CH ₃ ) ₂ ]	
	C ₁₃	C ₆ H ₅ SeCH ₂ C ₆ H ₅	LDA, THF	CH ₃ Br	$\begin{array}{l} \text{B}, \ C_{6}\text{H}_{3}\text{Sech} = \text{CHC}(\text{CH}_{3})_{2}[\text{SiC}_{6}\text{H}_{5}(\text{CH}_{3})_{2}] \\ \text{A}: 90, \ \text{B}: 10  (-) \\ \text{C}_{6}\text{H}_{5}\text{SeCHRC}_{6}\text{H}_{5} \\ \text{A}, \ \text{R} = \text{CH}_{3}  (-) \\ \text{A}  \text{R} = \text{CH}_{3}  (-) \end{array}$	144 58
			LDA, THF, -30°	C ₆ H ₅ CH ₂ Br sec-C ₄ H ₉ Br, -78° CH ₂ CHCH ₂ ,	A, $R = C_{4}C_{6}C_{6}H_{5}$ (-) A, $R = C_{4}H_{9}$ -sec (not isolated) A, $R = C_{1}C_{4}H_{9}$ -sec	58 59 59
229				0 -78°	(not isolated)	
				$C_6H_5CH_2CH_2Br$ , -78° $C_2H_2(CH_2)_2Br$	A, $\mathbf{R} = \mathbf{CH}_2\mathbf{CH}_2\mathbf{C}_6\mathbf{H}_5$ (not isolated) A $\mathbf{R} = (\mathbf{CH}_2)_2\mathbf{C}_2\mathbf{H}_2$	59 59
	C15	C6H3SeCH2CH=CHC6H3	LDA, THF, -78°, < 5 min	-78° CH ₃ COCH ₃ ,	(not isolated) A, $C_6H_5SeCH[COH(CH_3)_2]CH=CHC_6H_5$	144
				-78°	+ B, C ₆ H ₅ SeCH=CHCH[COH(CH ₃ ) ₂ ]C ₆ H ₅ A: 50, B: 50 (-)	
	~	CH ₂ SeC ₆ H ₅		0 W 0W 5	$CH(CH_2C_6H_5)SeC_6H_5$ (-)	
	C ₂₀	CH2SeC6H5	LDA, THF	C ₆ H ₅ CH ₂ Br	CH(CH ₂ C ₆ H ₅ )SeC ₆ H ₅	58

TABLE XXVIII. SELENOXIDES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C ₁₃	C ₆ H ₅ Se(O)CH ₂ C ₆ H ₅	LDA, THF-ether, 1:1, -78°	$n-C_5H_{11}I, -78^{\circ}$	$C_6H_5Se(O)CH(C_6H_5)R$ A, R = $C_5H_{11}$ -n (not isolated)	59
			$(CH_3)_2C = CHCH_2Br, -78^\circ$	A, $R = CH_2CH = C(CH_3)_2$ (not isolated)	59
			$C_6H_5CH_2Br$ , -78°	$\begin{array}{l} A, R = CH_2C_6H_5 \\ (not isolated) \end{array}$	59

TABLE XXIX. SILANES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₆	(CH ₃ ) ₃ SiC≡CCH ₃	<i>n</i> -C ₄ H ₉ Li, TMEDA, ether, $-15^{\circ}$ , 4 hr	CH ₂ Br	$RCH_2C \equiv CSi(CH_3)_3$ $A, R = $ (77)	611
			$[(CH_{3})_{2}N]_{3}PO,$ -20°, 6 hr -20°, 6 hr -20°, 15 hr [(CH_{3})_{2}N]_{3}PO, -2°° 15 hr	A, R = (-)	611
		$n-C_4H_9Li$ , TMEDA, ether,	$C_6H_5CH_2I$ , 0°, 12 hr	A, $R = CH_2C_6H_5$ (50)	379
		-5°, 15 min	<i>n</i> -C ₆ H ₁₃ I, 0°, 12 hr	A, R = $C_6 H_{13}$ -n (55)	379
			CH ₂ Br	A, R = $CH_2$ (50)	379
			CH ₂ Br	$A, R = \bigcup_{CH_2} (-)$	356

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₆ (Contd.)	(CH ₃ ) ₃ SiC≡CCH ₃	n-C4H9Li, TMEDA, ether, 0°	BCI	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	412
					$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	
232		(CH ₃ ) ₃ SiCH ₂ CH=CH ₂	Mg (1 eq), (CH ₃ ) ₃ SiCl (3 eq), TiCl ₄ or FeCl ₃ (cat), I(CH) NI PO	. <del></del>	$(CH_3)_3SiCH=CHCH_2R$ A, R = Si(CH_3) ₃ (58)	396
			$n-C_4H_9Li$ , TMEDA, ether,	(C ₆ H ₅ ) ₃ SiCl	A, $R = Si(C_6H_5)_3$ (-)	108
			$n-C_4H_9Li$ , THF, $-78^\circ$	C ₆ H ₅ COCH ₃	A, $(CH_3)_3SiCH(R)CH=CH_2$	
			<i>n</i> -C₄H₂Li, TMEDA, THF, - 78°, 2 hr,		B, $(CH_3)_3$ SiCH=CHCH ₂ R A: 0, B: 100, R = C(OH)(CH ₃ )C ₆ H ₅ (-) A: 0, B: 100, R = C(OH)(CH ₃ )C ₆ H ₅ (-)	281b 281b
			$ZnCl_2$ , $-78^\circ$ , 45 min <i>n</i> -C ₄ H ₉ Li, TMEDA, THF, $-78^\circ$ , 2 hr, CdI ₂ ,		A: 0, B: 100, R = C(OH)(CH ₃ )C ₆ H ₅ (-)	281b
			$-78^{\circ}$ , 45 min <i>n</i> -C ₄ H ₉ Li, TMEDA, THF, $-78^{\circ}$ , 2 hr.		A: 92, B: 8, R = C(OH)(CH ₃ )C ₆ H ₅ (-)	281b
			MgBr ₂ , $-78^{\circ}$ , 45 min <i>n</i> -C ₄ H ₉ Li, THF, $-78^{\circ}$ , 2 hr, MgBr ₂ , $-78^{\circ}$ , 45 min		A: 86, B: 14, R = C(OH)(CH ₃ )C ₆ H ₅ (-)	281b
			$t-C_4H_9Li, [(CH_3)_2N]_3PO, THF, -78°, 2 hr, MgBr_2, -78° 45 min$		A: 95, B: 5, R = C(OH)(CH ₃ )C ₆ H ₅ (-)	281b
			$t-C_4H_9Li$ , [(CH ₃ ) ₂ N] ₃ PO, THF, -78°, 2 hr, $t-C_4H_9Li$ , [(CH ₃ ) ₂ N] ₃ PO, THF, -78°, 2 hr, THF, -78°, 2 hr,	C6H3CHO	$A:0, B: 100, R = CH(OH)C_6H_5$ (-)	2815
					A: 60, B: 40, R = CH(OH)C ₆ H ₅ (-)	2815
			$m_{2}$ , $-78$ , $45$ min $n-C_{4}H_{9}Li$ , THF, $-78^{\circ}$ , then $-40^{\circ}$	<i>p</i> -CH ₃ C ₆ H₄CHO	(CH ₃ ) ₃ SiCH=CHCH ₂ R	
		4 <u>1</u>		<u>^</u>	A, R = $p$ -CH ₃ C ₆ H ₄ CH(OH) (-)	284c
				$\sum_{i=1}^{n}$	$\mathbf{A}, \mathbf{R} = \underbrace{(77)}$	284c
2				$\bigcirc$	$A, R = \bigcup^{OH} (73)$	284c
33	<b>C</b> ₇	(CH ₃ ) ₃ SiCH(CH ₃ )CH=CH ₂	Mg (1 eq), $(CH_3)_3SiCl$ (3 eq), TiCl ₄ or FeCl ₃ (cat), $[(CH_3)_2N]_3PO$	-	$(CH_3)_3SiCH_2CH=C(CH_3)Si(CH_3)_3$ (30)	396
	C ₁₀	(CH ₃ ) ₃ SiCH ₂ C ₆ H ₅	CH ₃ Li, [(CH ₃ ) ₂ N] ₃ PO, 0°	$D_2O$ $C_6H_5CHO$ , $0^\circ$ , 2 hr, then room temperature, 1 hr	$(CH_3)_3SiCHDC_6H_5$ (85) $C_6H_5CH=CHC_6H_5$ (50) cis: 1, trans: 2	367 367
			n-C₄H9Li, [(CH3)2N]3PO n-C4H9Li, THF, TMEDA	D ₂ O C ₆ H ₅ CHO CH ₃ COCH ₃	$(CH_3)_3SiCHDC_6H_5$ (85) $C_6H_5CH=CHC_6H_5$ (72) $C_6H_5CH=C(CH_3)_2$ (50)	107 532 532
				$\bigcirc^{\circ}$	CHC ₆ H ₅ (52)	532
				C6H5COC6H5	$C_6H_5CH=C(C_6H_5)_2$ (77)	532

#### TABLE XXIX. SILANES (Continued)

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C	(CH ₃ ) ₂ SiCH(Br)C ₆ H ₆	Mg, ether	CH ₂ =CHCH ₂ Br,	$(CH_3)_3SiCH(C_6H_5)CH_2CH=CH_2$ (74)	425
	(Contd.)	(01.3)30000(20)08003		reflux, 4.5 hr $(CH_3CO)_2O, -60^\circ,$ 3.5 hr, then warmed to $-10^\circ,$	C ₆ H ₅ CH(COCH ₃ )Si(CH ₃ ) ₃ (19)	425
				(CH ₃ ) ₃ SiCHBrC ₆ H ₅	$(CH_3)_3SiCH(C_6H_5)CH(C_6H_5)Si(CH_3)_3 (35)$ Si(CH_3)_3	425
	C ₁₁	$\bigcirc$	n-C4H9Li	(CH ₃ ) ₃ SiCl	(-)	425
234		(CH ₃ ) ₃ Si Si(CH ₃ ) ₃			(CH ₃ ) ₃ Si ^{Si} (CH ₃ ) ₃	
		Si(CH ₃ ) ₃			(CH ₃ ) ₃ Si	
		$\langle \rangle$			Si(CH ₃ ) ₃ ()	
		Si(CH ₃ ) ₃			Si(CH ₃ ) ₃ (CH ₃ ) ₃ SiSi(CH ₃ ) ₃	
	C14		n-C4H9Li	(CH ₃ ) ₃ SiCl	(-)	452
		(CH ₃ ) ₃ Si Si(CH ₃ ) ₃			(CH ₃ ) ₃ Si Si(CH ₃ ) ₃	
		(CH ₃ ) ₃ Si				
		Si(CH ₃ ) ₃				
	C ₁₆		n-C ₄ H ₉ Li, ether, reflux, 16 hr	$\rm CO_2$ , then $\rm H_3O^+$	(89)	412
	C ₂₁	Si(CH ₃ ) ₃ (C ₆ H ₅ ) ₃ SiC≡CCH ₃	(C ₆ H ₅ ) ₃ SiLi (1 eq), THF,	H ₃ O ⁺	CO ₂ H (C ₆ H ₅ ) ₃ SiH (51)	413
			room temperature, 5 nr		$(C_6H_5)_3SiC \equiv CCH_3$ (18)	
					$(C_6H_5)_3SiC \equiv CCH_2Si(C_6H_5)_3  (30)$	
				(C ₆ H ₅ ) ₃ SiCl	$\begin{array}{c} (C_{6}H_{5})_{3}SiCH = C(CH_{3})Si(C_{6}H_{5})_{3}  (19) \\ [(C_{6}H_{5})_{3}Si]_{2}C = C = CHSi(C_{6}H_{5})_{3}  (32) \\ + \end{array}$	413
					(C ₆ H ₅ ) ₃ SiH (25) +	
					$(C_6H_5)_3$ SiCH=C(CH_3)Si(C_6H_5)_3 (18) +	
235					$(C_6H_5)_3SiC \equiv CCH_2Si(C_6H_5)_3  (9)$	
			$(C_6H_5)_3$ SiLi, THF, ether, 5 hr	(C ₆ H ₅ ) ₃ SiCl	$\begin{array}{c} (C_6H_5)_3SiC \equiv CCH_3 & (10) \\ (C_6H_5)_3SiSi(C_6H_5)_3 & (16) \\ + \end{array}$	413
					$(C_6H_5)_3SiC \equiv CCH_3$ (29)	
					(C ₆ H ₅ ) ₃ SiH (55) +	
					$(C_6H_5)_3SiCH=C(CH_3)Si(C_6H_5)_3 (15)$	
					$[(C_6H_5)_3Si]_2C = C = CHSi(C_6H_5)_3$ (23)	
					$(C_6H_5)_3SiC \equiv CCH_2Si(C_6H_5)_3$ (5)	

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
		(C ₆ H ₅ ) ₃ SiC≡CCH ₃	C ₆ H ₅ Li, THF,	(C ₆ H ₅ ) ₃ SiH	(C ₆ H ₅ ) ₃ SiH (70)	413
	(Contd.)	(	room temperature, 5 hr		+ (C ₆ H ₅ ) ₄ Si (10)	
					+ (C ₆ H ₅ ) ₃ SiC≡CCH ₂ Si(C ₆ H ₅ ) ₃ (−)	
				(C ₆ H ₅ ) ₃ SiCl	+ $(C_6H_5)_3SiC\equiv CCH_3$ (14) $[(C_6H_5)_3Si]_2C= C= CHSi(C_6H_5)_3$ (23)	413
					$(C_6H_5)_3SiC \equiv CCH_2Si(C_6H_5)_3  (13)$	
23					$^{+}_{(C_6H_5)_4Si}$ (12)	
36		(C ₆ H ₅ ) ₃ SiCH ₂ CH=CH ₂	(C ₆ H ₅ ) ₃ SiLi (1 eq), THF, room temperature, 22 br	H ₃ O ⁺	$ \begin{array}{c} + \\ (C_6H_5)_3SiC \equiv CCH_3  (33) \\ (C_6H_5)_3SiH  (29) \\ + \end{array} $	413
			<i>n</i> -C ₄ H ₉ Li, TMEDA, ether,	HCI, N	$(C_6H_5)_3SiCH=CHCH_2Si(C_6H_5)_3  (40)$ A, $(C_6H_5)_3SiCHRCH=CH_2$ +	
			room emperature, 5 m	$CH_3I$ $CH_2CH_2,$ O	B, $(C_6H_5)_3$ SiCH=CHCH ₂ R A: 30-40, B: 60-70, R = H (80) A: 0, B: 1, R = CH ₃ (80) A: 40, B: 60, R = CH ₂ CH ₂ OH (70)	108, 255 108, 255 108, 255
				room temperature, 5°	$A: 90 B: 10 R = CH_2CH_2OH$ (70)	255
				C ₆ H ₅ COC ₆ H ₅ CO ₃	A: 0, B: 1, $R = C(OH)(C_6H_5)_2$ (90) A: 20, B: 80, $R = CO_2H$ (60)	108, 255
				(CH ₃ ) ₃ SiCl C ₆ H ₅ CON(CH ₃ ) ₂	A: 0, B: 1, R = Si(CH ₃ ) ₃ (80) (C ₆ H ₅ ) ₃ SiCH ₂ CH=CHCOC ₆ H ₅ (50-60)	108, 255 255
		(C ₆ H ₅ ) ₃ SiCH=CHCH ₂ Br	Mg, ether, room temperature	CH ₃ CON(CH ₃ ) ₂ H ₂ O CH ₃ I CH ₂ CH ₂ CH ₂	$(C_6H_5)_3$ SiCH ₂ CH=CHCOCH ₃ (60) $(C_6H_5)_3$ SiCH ₂ CH=CH ₂ (80) No reaction A. $(C_6H_5)_3$ SiCHRCH=CH ₂ + B. $(C_6H_5)_3$ SiCH=CHCH B	255 255 255
	C22	(C ₆ H ₅ ) ₃ SiC≡CC ₂ H ₅	(C ₆ H ₅ ) ₃ SiLi (1.2 eq), THF, room temperature, 40.5 hr	C ₆ H ₅ COC ₆ H ₅ CO ₂ (CH ₃ ) ₃ SiCl H ₃ O ⁺	$ \begin{array}{l} \text{B}_{1}(c_{6}\text{H}_{3})_{3}\text{SiGH} = \text{Ch}_{2}\text{Ch}_{2}\text{OH} & (70) \\ \text{A: 0, B: 10, R} = \text{C}_{2}\text{C}_{4}\text{OH} & (70) \\ \text{A: 0, B: 1, R} = \text{C}(\text{OH})(\text{C}_{6}\text{H}_{5})_{2} & (65) \\ \text{A: 85, B: 15, R} = \text{C}_{2}\text{H} & (60) \\ \text{A: 0, B: 1, R} = \text{Si}(\text{C}\text{H}_{3})_{3} & (50) \\ \text{(C}_{6}\text{H}_{5})_{4}\text{Si} & (5) \\ & + \\ \text{(C}_{6}\text{H}_{5})_{3}\text{SiH} & (43) \end{array} $	255 255 255 255 255 413
					+ (C ₆ H ₅ ) ₃ SiCH=C(C ₂ H ₅ )Si(C ₆ H ₅ ) ₃ (2)	
237			C ₆ H ₅ Li (1.5 eq), THF,	CH ₃ I	$(C_6H_5)_3SiC\equiv CCH(CH_3)Si(C_6H_5)_3$ (2) $(C_6H_5)_4Si$ (42)	413
			C ₆ H ₅ Li (1.1 eq), THF,	(C ₆ H ₅ ) ₃ SiH	$(C_6H_5)_3SiC \equiv CC_3H_7 - i  (3)$ $(C_6H_5)_3SiH  (81)$	413
			room temperature, 20 m		(C ₆ H ₅ ) ₄ Si (48)	
					$(C_6H_5)_3SiC \equiv C_2H_5  (1)$	
					$(C_6H_5)_3SiC \equiv CCH(CH_3)Si(C_6H_5)_3  (-)$	
	C ₂₄	(C ₆ H ₅ ) ₃ SiCH ₂ CH=CHSi(CH ₃ ) ₃	<i>n</i> -C ₄ H ₉ Li, TMEDA, ether, room temperature	(CH ₃ ) ₃ SiCl, 4 hr	$(C_6H_5)_3SiCH=C=C(CH_3)Si(C_6H_5)_3 (15)$ A, (C_6H_5)_3SiCH=CHCH[Si(CH_3)_3]_2 +	
		(C ₆ H ₅ ) ₃ SiCH=CHCH ₂ Si(CH ₃ ) ₃	esasere; est 1980;1375;575		B, [(C ₆ H ₅ ) ₃ Si] [(CH ₃ ) ₃ Si]CHCH=CHSi(CH ₃ ) ₃ A: 88, B: 12 (70-75)	108
	C25	(C ₆ H ₅ ) ₃ SiCH ₂ C ₆ H ₅	$n-C_4H_9Li$ , ether, reflux 2 hr	H ₂ O	(C ₆ H ₅ ) ₃ SiCH ₂ C ₆ H ₅ (80)	37

No. of C Atom	s Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₂₅ (Conto	(C ₆ H ₅ ) ₃ SiCH ₂ C ₆ H ₅	$n-C_4H_9Li$ , ether,	CO ₂	(C ₆ H ₅ ) ₃ SiOH (52)	37
	)	<i>n</i> -C ₄ H ₉ Li, ether, room temperature, 18 hr	CH ₃ I	$C_6H_5CH_2CO_2H$ (43) $C_6H_5CH(CH_3)Si(C_6H_5)_3$ (79)	356
	(C ₆ H ₅ ) ₂ CHSi(C ₆ H ₅ ) ₃	<i>n</i> -C ₄ H ₉ Li, THF, room temperature, 3-4 hr	$(CH_3)_3SiCl$ $CO_2$ , then $H_2O$ $D_2O$	$\begin{array}{l} C_{6}H_{5}CH[Si(CH_{3})_{3}]Si(C_{6}H_{5})_{3}  (76) \\ (C_{6}H_{5})_{3}SiCH(C_{6}H_{5})CO_{2}H  (60) \\ (C_{6}H_{5})_{2}CDSi(C_{6}H_{5})_{3}  (88) \end{array}$	356 356 356
			$CH_3I$ $CO_2$ , then $H_2O$	$(C_6H_5)_2C(CH_3)Si(C_6H_5)_3$ (81) $(C_6H_5)_3SiO_2CCH(C_6H_5)_2$ ()	356 356
238				(C ₆ H ₅ ) ₃ SiOH	
				(C ₆ H ₅ ) ₂ CHCO ₂ H (-)	
C ₃₉	(C ₆ H ₅ ) ₃ SiC≡CCH ₂ Si(C ₆ H ₅ ) ₃	C ₆ H ₅ Li (1 eq), THF, room temperature, 40 min	(CH ₃ ) ₂ SO ₄ C ₆ H ₅ CH ₂ Cl (C ₆ H ₅ ) ₃ SiCl, 5 hr	$(C_6H_5)_2C(CH_3)Si(C_6H_5)_3$ (58) $C_6H_5CH_2C(C_6H_5)_2Si(C_6H_5)_3$ (25) $(C_5H_4)_2Si$ (12)	609 609 413
				$(C_{c}H_{c})_{3}C = C = CHSi(C_{c}H_{c})_{3}$ (42)	
		C ₆ H ₅ Li (2 eq), THF, room temperature, 1 hr	CH ₃ I, 1 hr	$+ (C_6H_5)_3SiC \equiv CCH_2Si(C_6H_5)_3  (28) \\ (C_6H_5)_4Si  (9)$	413
				$(C_6H_5)_3SiC(CH_3)=C=C(CH_3)Si(C_6H_5)_3$ (3)	
				$+ (C_6H_5)_3SiC \equiv CCH(CH_3)Si(C_6H_5)_3  (-)$	
				$(C_6H_5)_3SiCH = C = C(CH_3)Si(C_6H_5)_3$ (51)	
			CHILLE		413
		room temperature, 1 hr	C1131, 1 m	$(C_{\epsilon}H_{\epsilon})_{\epsilon}SiC = CH(CH_{\epsilon})Si(C_{\epsilon}H_{\epsilon})_{\epsilon} $ (58)	415
		(C ₆ H ₅ ) ₃ SiLi (1 eq), THF, room temperature, 3.5 hr	(C ₆ H ₅ ) ₃ SiCl, 3.5 hr	$(C_6H_5)_3SiSi(C_6H_5)_3$ (3)	413
				$(C_6H_5)_3SiH$ (89)	
				$[(C_{6}H_{5})_{3}Si]_{2}C = C = CHSi(C_{6}H_{5})_{3}  (51)$	
C ₄₀	$(C_6H_5)_3SiC \equiv CCH(CH_3)Si(C_6H_5)_3$ + $(C_6H_5)_3SiCH = C = C(CH_3)Si(C_6H_5)_3$	C ₆ H ₅ Li (2 eq), THF, room temperature, 3 hr	CH3I	$[(C_{6}H_{5})_{3}Si]_{2}C = C = C[Si(C_{6}H_{5})_{3}]_{2}  (-)$ (C_{6}H_{5})_{3}SiC(CH_{3}) = C = C(CH_{3})Si(C_{6}H_{5})_{3}  (36) +	413
				$(C_6H_5)_3SiC \equiv CCH(CH_3)Si(C_6H_5)_3$ (-)	
C57	$[(C_6H_5)_3Si]_2C=C=CHSi(C_6H_5)_3$	(C ₆ H ₅ ) ₃ SiLi (2 eq), THF, room temperature, 3.5 hr	(C ₆ H ₅ ) ₃ SiCl, room temperature, 3.5 hr	$ \begin{array}{c} + \\ (C_6H_5)_3SiC \equiv CC(CH_3)_2Si(C_6H_5)_3 \\ (C_6H_5)_3SiSi(C_6H_5)_3 \\ (31) \end{array} $	413
				(C ₆ H ₅ ) ₃ SiH (53)	
				$[(C_6H_5)_3Si]_2C = C = C[Si(C_6H_5)_3]_2  (3)$	
		C ₆ H ₅ Li (3 eq), THF,	CH ₃ I, 1 hr		413
		(C ₆ H ₅ ) ₃ SiLi (2 eq), THF, room temperature, 5 hr	$\begin{array}{c} D_2O\\ H_3O^+ \end{array}$	$[(C_6H_5)_3Si]_2C = C = CDSi(C_6H_5)_3  (88) (C_6H_5)_3SiH  (70) + $	413 413
		C ₆ H ₅ Li (1.3 eq), THF, room temperature, 1.5 hr	(C ₆ H ₅ ) ₃ SiCl, room temperature, 27 hr	$[(C_6H_5)_3Si]_2C = C = CHSi(C_6H_5)_3 (89) (C_6H_5)_4Si (12) + $	413
				$[(C_6H_5)_3Si]_2C = C = C[Si(C_6H_5)_3]_2  (14)$	
				$[(C_6H_5)_3Si]_2C = C = CHSi(C_6H_5)_3$ (17)	

#### TABLE XXIX. SILANES (Continued)
TABLE XXX. SULFIMINES

Ref.

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C,	C ₆ H ₅ CH ₂ SO ₂ N(CH ₃ ) ₂	<i>n</i> -C ₄ H ₉ Li (2 eq), THF, <i>n</i> -C ₆ H ₁₄ ,	D ₂ O	C ₆ H ₅ CR ₂ SO ₂ N(CH ₃ ) ₂	
		0°, then room temperature, 45 min	CH 1 (2.2 eq)	A, R = D (81) A, B = CH (75)	55
			BrCH ₂ (CH ₂ ) ₂ CH ₂ Br	$A, R = CH_3$ (75) $A, R_2 = (CH_2)$ (86)	55 55
C ₁₉	C ₆ H ₅ SO ₂ N(C ₆ H ₅ )CH ₂ C ₆ H ₅	C ₆ H ₅ Li (1 eq), THF, room temperature, overnight	C ₂ H ₅ OH	$C_6H_5N = CHC_6H_5$ (20) +	29
				$C_6H_5NHCH(C_6H_5)_2$ (25)	
		C ₆ H ₅ Li (2.3 eq), THF,	C ₂ H ₅ OH	+ $C_6H_5SO_2N(C_6H_5)NCH_2C_6H_5$ (- $C_6H_5NHCH(C_6H_5)_2$ (95)	) 29
		then $C_6H_5Li$ (2.3 eq), room temperature, 5 hr			
6	SO ₂ C ₆ H ₅			N	
C ₂₅	N C6H5	$C_6H_5Li$ (4 eq), THF, room temperature, 5 hr		$\bigvee_{H} C_6 H_5  (77)$	29
	SO ₂ C ₆ H ₅ SO ₂ C ₆ H ₅			H C ₆ H ₅	
C ₂₆		$C_6H_5Li$ (20 eq), THF, room temperature, 3 days	-		29
	I SO ₂ C ₆ H ₅			Ĥ C ₆ H₅	

TABLE XXXI. SULFONAMIDES

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	c.	$\langle \mathbf{x} \rangle$	CH3OH, C6H3CH2Ň(CH3)3OH ⁻ 10°, 3.5 hr	CH2=CHCN (4 eq)	$(NCCH_2CH_2)_2$ $S_{O_2}$ $(CH_2CH_2CN)_2$ (20)	156
	C,	$\left( \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right)$	$n-C_4H_9Li$ (1.1 eq), $C_6H_6$ , $n-C_6H_{14}$ , room temperature, 15 min	D ₂ O, D ₂ SO ₄	(1.16  D) (-)	237
242				ссі,ссі,	(32) + (5) $(5)$ $(32) + (2)$ $(32) + (2)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $($	237
			5% NaOH, H2O, 24 hr	-	3, CI 3, CI	402
			(C ₂ H ₅ ) ₃ N		(45) Na ⁺	402
	C ₆		NaCH ₂ S(O)CH ₃ . CH ₃ S(O)CH ₃	1777) 1	$ \begin{array}{c} - \\ S \\ O_2 \\ O_2 \end{array} $	71
			NaCH ₂ S(O)CH ₃ , CH ₃ S(O)CH ₃		$\left(\begin{array}{c} -\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	71
		(CH ₃ ) ₂ C=CHCH ₂ SO ₂ CH ₃	r-C₄H9OK (1 eq), THF	(CH ₃ ) ₂ C=CHCOCH ₃	HO $O_2$ (-) HO	253
				C ₆ H ₃ CH=CHCOC ₆ H ₃	$C_6H_3 + S_2 + (-)$	253
				CH ₃ CH=CHCO ₂ C ₂ H ₅		253
				(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅		253
2				C ₆ H ₅ CH=CHCO ₂ C ₂ H ₅	$C_{\mathbf{s}}$ $(-)$	253
43		(CH ₃ ) ₂ C=CHCH ₂ SOCH ₃	r-C₄H9OK (0.2 eq), THF	C ₆ H ₅ CH=CHCOC ₆ H ₅	$C_6H_5COCH_2CH(C_6H_5)CH(SO_2CH_3)CH=C(CH_3)_2$ (-)	253
	C,	C ₄ H ₀ -1	2 N NaOH	н,0*	$ \begin{bmatrix} S \\ O_2 \\ C_4 H_{0} - t \end{bmatrix} $ (-)	409
	C ₈	$\langle \overline{s} \rangle$	KOH, C2H3OH, H2O, UV	- 22)	(-)	338
		C ₂ H ₃ SO ₂ CH(CH ₃ )CH=CHSO ₂ C ₂ H ₃	KOH, C ₂ H ₅ OH, H ₂ O, UV		$C_2H_3SO_2C(CH_3)=CHCH_2SO_2C_2H_3$ (-)	547
	C,		CD ₃ COCD ₃ , D ₂ O, 2 hr	-	A, R = D  (-)	349
		CH ₂ =CHCH ₂ SO ₂ C ₆ H ₅	CH ₃ OD, 6 hr CD ₃ S(O)CD ₃ , D ₂ O, 8 hr (C ₂ H ₃ ) ₃ N, 89°, or pyridine, 115°, or <i>t</i> -C ₄ H ₉ OK, <i>t</i> -C ₄ H ₉ OH, 25°		A, R = D $(-)$ A, R = D $(-)$ CH ₂ =CHCH ₂ SO ₂ C ₆ H ₅ (28) + CH ₃ CH=CHSO ₂ C ₆ H ₅ cis (3); trans (69)	349 349 560

#### TABLE XXXII. SULFONES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
Cio	⟨ _S ) ^{C₆H_s}	(C ₂ H ₅ ) ₃ N, CH ₃ S(O)CH ₃ , 90°, I hr	-	(60-90)	420
	$O_2$ CH ₂ =C=CHSO ₂ C ₆ H ₄ CH ₃ -p	(CH ₃ CuCH ₃ )Li, ether, THF, 25°, 10 min (CH ₃ CuCH ₃ )MgX, ether,	NH₄CI NH₄CI	$O_2$ $CH_2 = CRCH_2SO_2C_6H_4CH_3-p$ $A, R = CH_3$ (-) $A, R = CH_3$ (50)	482 482
		THF (i-C ₃ H ₇ CuC ₃ H ₇ -i)MgX, ether, THF (CH ₃ CuR)Li, THF-ether,	NH₄CI NH₄CI	A, R = $C_3H_7$ - <i>i</i> (60) CH ₂ ==C(CH ₃ )CH ₂ SO ₂ C ₆ H ₄ CH ₃ - <i>p</i>	482
		$1:1, -20^{\circ}, 20 \text{ min}$ $R = C \equiv CC_{6}H_{5}$ R = CN R = I $(CH_{5}CUH_{3})Li,$ THE-ether $1:1 - 20^{\circ}$	CH2=CHCH2Br	$CH_{2} == C(CH_{3})CH_{2}SO_{2}C_{6}H_{4}CH_{3}\cdot p  (85)$ $CH_{2} == C(CH_{3})CH_{2}SO_{2}C_{6}H_{4}CH_{3}\cdot p  (70)$ $CH_{2} == C(CH_{3})CH_{2}SO_{2}C_{6}H_{4}CH_{3}\cdot p  (70)$ $CH_{2} == C(CH_{3})CHRSO_{2}G_{6}H_{4}CH_{3}\cdot p$ $A = CH_{4}-CH = CH_{4}-(78)$	166 166 166
	CH ₂ =C=CHSO ₂ C ₆ H ₄ OCH ₃ -p	20 min (CH ₃ CuC≡CC ₆ H ₃ )Li, ether, THF	C₀H₅CH=CHCOC₀H₅ NH₄Cl	A, R = CH ₂ CH ₂ CH ₂ CH ₂ COC ₆ H ₅ (-) CH ₂ =C(CH ₃ )CH ₂ SO ₂ C ₆ H ₄ OCH ₃ - $p$ (85)	166 482
		(CH ₃ CuCN)Li, ether, THF (CH ₃ CuCH ₃ )Li, ether, THF	NH ₄ Cl C ₆ H ₅ CH=CHCOCH ₃	$CH_{3} = C(CH_{3})CH_{2}SO_{2}C_{6}H_{4}OCH_{3}-p/CH(C_{6}H_{5})CH_{2}COC$ $CH_{2} = C(CH_{3})CH(SO_{2}C_{6}H_{4}OCH_{3}-p)CH(C_{6}H_{5})CH_{2}COC$ $(-$	482 H ₃ 482 )
	CH ₂ SO ₂ CH ₂ CH ₂	KOH, CCl ₄ , room temperature		$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	358
	CH ₂ SO ₂ CH ₂ C ₈ CH ₂ =CHCH ₂ SO ₂ CH ₂ C ₆ H ₃	$CH_3OCH_2CH_2OCH_3,$ $0^{\circ}$ $(n-C_3H_{11})_3N, 120^{\circ}, 6 hr$	-	CH_CH=CHC0_2CH_C_H_ (50)	339
	CH ₂ =C(CH ₃ )CH ₂ SO ₂ C ₆ H ₅ CH ₃ =CHCH(CH ₃ )SO ₂ C ₆ H ₅	CH ₂ C ₆ H ₅ C ₂ H ₅ OH, reflux 16 hr (C ₂ H ₅ ) ₅ N, 89°, or pyridine, 115°, or t-C ₄ H ₉ OK, t-C ₄ H ₉ OH, 25°	≂.   −1	$CH_{3}CH = CHSO_{2}CH_{2}C_{6}H_{5}  (45)$ $A, CH_{2} = C(CH_{3})CH_{2}SO_{2}C_{6}H_{5}$ $+ B, (CH_{3})_{2}C = CHSO_{2}C_{6}H_{5}$ $A: 70, B: 30  (-)$ $CH_{-}CH = C(CH_{-})SO_{-}C_{+}H_{-}  (100)$	339 560
	[(CĤ ₃ ) ₂ C=CHCH ₂ ] ₂ SO ₂	KOH, CCl ₄ , room temperature		$(CH_3)_2C=CHCH=CHCH=C(CH_3)_2$ (78) $(CH_3)_2C=CHCH=Na^+$	358
Cu	So 2	NaCH ₂ S(O)CH ₃ , CH ₃ S(O)CH ₃ NaCH ₂ S(O)CH ₃ , CH ₃ S(O)CH ₃	-	$ \begin{array}{c} - \\ S \\ O_2 \\ C_4H_5 \\ Na^+ \\ - \\ S^{} \\ \end{array} $ (-)	455 455
	SO ₂ C ₆ H ₅	NaH, (CH ₃ ) ₂ NCHO, 25°		O ₂ CH ₂ Br CH ₂ Br SO ₂ C ₆ H ₅	=0 623
	CH ₃ CH=C=CHSO ₂ C ₆ H ₄ CH ₃ -p	(CH ₃ CuCH ₃ )Li, THF	NH₄CI	<pre>CH₃CH=C(CH₃)CH₂SO₂C₆H₄CH₃-p cis: 20, trans: 80 (70)</pre>	-) 166
	CH ₂ =CHCH(CH ₃ )SO ₂ CH ₂ C ₆ H ₅	, pyridine	ä.	CH ₃ CH=C(CH ₃ )SO ₂ CH ₂ C ₆ H ₃ (76)	340
	$CH_{2} = C(CH_{3})CH_{2}SO_{2}CH_{2}C_{6}H_{3}$ $(CH_{3})_{2}C = C(CH_{3})SO_{2}C_{6}H_{3}$ $CH_{2} = C(CH_{3})CH_{2}SO_{2}C_{6}H_{4}CH_{3}-p$	140°, o nr sec-C ₃ H ₁₁ OH, (n-C ₃ H ₁₁ ) ₃ N, 130°, 16 hr CH ₃ Li, THF, -55° CH ₃ Li (1 eq), THF, -20°, 30 min CuI (1 eq), -20°, 5 min	– CH ₃ I CH ₂ =CHCH ₂ Br	$(CH_3)_2C=CHSO_2CH_2C_6H_5$ (20) $CH_2=C(CH_3)C(CH_3)_2SO_2C_6H_5$ (63) $CH_2=C(CH_3)CHRSO_2C_6H_4CH_3-p$ $A, R = CH_2CH=CH_2$ (88)	340 624 166

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₁ (Contd.)	CH ₂ =C(CH ₃ )CH ₂ SO ₂ C ₆ H ₄ CH ₃ -p	CH ₃ Li (1 eq), - 20° n-C ₄ H ₉ Li, THF, - 30°,	C ₆ H ₅ CH=CHCOC ₆ H ₅ CH ₃ I	A. $R = CH(C_6H_5)CH_2COC_6H_5$ (80) A. $R = CH_3$ (80)	166 280
		15 min n-C ₄ H ₉ Li, ether, TMEDA n-C ₄ H ₉ Li, THF, - 30°, 15 min.	CH₂=CHCH₂Br C ₆ H ₃ C≡CCHBrCH ₃ C ₆ H ₃ CHO C ₆ H ₃ CH=CHCOC ₆ H ₅ CH ₃ I CH ₃ I	A, $R = CH_2CH=CH_2$ (89) A, $R = CH(CH_3)C\equiv CC_6H_5$ (50) A, $R = CH(OH)C_6H_5$ (90) A, $R = CH(C_6H_3)CH_2COC_6H_5$ (80) A, $R = CH_3$ (75) A, $R = CH_3$ (70)	280 280 280 280 280 280 280
		Cul (I eq), 15 min	CH2=CHCH2Br	A, RCH ₂ C(CH ₃ )=CHSO ₂ C ₆ H ₄ CH ₃ -p	
		n-C₄H₀Li, THF,	C ₆ H ₅ C≡CCH(CH ₃ )Br C ₆ H ₅ CH≕CHCOC ₆ H ₅ n-C ₆ H ₁₃ Br (1.25 eq).	B, $CH_2 = C(CH_3)CH(R)SO_2C_6H_4CH_3-p$ A: 9, B: 1, R = $CH_2CH = CH_2$ (90) No reaction A: 0, B: 1, R = $CH(C_6H_3)CH_2COC_6H_5$ (80) p- $CH_3C_6H_4SO_3CH(C_6H_{1,3}-n)C(CH_3) = CH_2$ (-)	280 280 280 316a
	p-CH ₃ C ₆ H ₄ SO ₂ CH ₂ CH=CHCH ₃	n-C₄H₀Li, THF	$[(CH_3)_2N]_3PO (1.25 eq), 0^\circ$ <i>n</i> -C ₆ H ₁₃ Br (1.25 eq),	$p-CH_3C_6H_4SO_2CH(C_6H_{13}-n)CH=CHCH_3$ (-)	316a
	(E) C ₆ H ₃ SO ₂ CH ₂ CH=C(CH ₃ ) ₂	$C_6H_3CH_2\dot{N}(C_2H_3)_3Cl^-,$ $CH_2Cl_2,$ 50% aqueous NaOH, room temperature, 6 hr	[(CH ₃ ) ₂ N] ₃ PO (1.25 eq), 0° C ₆ H ₃ CHO	(E) $C_6H_5O_2C[CH=C(CH_3)_2]=CHC_6H_5$ (25) (E)	158
		1-C4H9OK, THF, -20°	CH ₂ =CHCH ₂ Cl, -10°, 1 hr, 0°, 1 hr, 21°, 2 hr	$C_6H_5SO_2CHRCH=C(CH_3)_2$ A, R = CH_2CH=CH_2 (44)	332
		<i>t</i> -C ₄ H ₉ Li, THF, -78°, 30 min	CH ₂ CH(CH ₃ )CH=CH ₂ ,	$A, \mathbf{R} = CH_2C(OH)(CH_3)CH = CH_2  (97)$	326
		1-C4H9OK (2 eq), THF,	CH ₂ =CHC(CH ₂ Cl)=CH ₂ , -30°,	$A, R = CH_2C(CH=CH_2)=CH_2  (93)$	332
		<i>t</i> -C ₄ H ₉ OK, THF, -10°	$(CH_3)_2C = CHCH_2Cl_1 - 10^\circ, 1.25 \text{ hr}, 0^\circ,$ $1 \text{ hr}, 18^\circ, 2 \text{ hr}$	$A, R = CH_2CH = C(CH_3)_2  (-)$	364
		1-C₄H9OK, THF, −20°	(E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	A, $\mathbf{R} = CH_2C(CH_3) = CHCH_2OH (-)$	365
		n-C₄H9Li, THF, −70°, 1 hr	BrCH ₂ C(CH ₃ )=CHCO ₂ CH ₃ , (E) -70°.1 br	$A, R = CH_2C(CH_3) = CHCO_2CH_3  (83)$ (E)	365
			$CICH_2C(CH_3) = CHCH_2OCOCH_3,$ -70°, 1 hr	A, $R = CH_2C(CH_3) = CHCH_2OCOCH_3$ (83) (E)	365
		t-C4H9OK (2 eq), THF	CH ₃ CH=CHCO ₂ C ₂ H ₅ , then OH ⁻	со,н (-)	594
			(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ (1 eq)	CO ₂ C ₂ H ₅ (-)	148, 252
				$(CH_3)_2C = CHCH(SO_2C_6H_5)COCH = C(CH_3)_2 (-)$ $+ (CH_3)_2C = CHCH(SO_2C_6H_3)C(CH_3)_2CH_2CO_2C_6H_4 (-)$	
			(i-C ₃ H ₇ ) ₂ C=CHCO ₂ C ₂ H ₃ , then OH ⁻		594
			$\sim$		
			CHCO ₂ C ₂ H ₅ , then OH ⁻	(-)	594
			C6H3CH=CHCO2C2H3, then OH-	C ₆ H ₃ ()	594
		t-C₄H9OK (3 eq), (CH3)2NCHO, 0.25 hr,	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ , (2 eq)		148
		25°		-CO ₂ C ₄ H ₉ -t ()	148
			$\bigcirc$	A. CO ₃ CH ₃	
		t-C ₄ H ₉ OK (3 cq), (CH ₃ ) ₂ NCHO 25°, 0.25 hr	(2 eq) CO ₂ CH ₃	B, CO ₂ CH ₃	29404
				A : 2, B : 3 (60)	148

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₁ (Contd.)	C ₆ H ₃ SO ₂ CH ₂ CH=C(CH ₃ ) ₂	r-C ₄ H ₉ OK (3 eq), (CH ₃ ) ₂ NCHO 25°, 0.25 hr	(2 eq) CO ₂ CH ₃	A : 2, B : 3 (60)	148
					CO ₂ C ₂ H ₅ (50, total)	148
248					CO ₂ C ₂ H ₅ + CO ₂ C ₂ H ₅ (-, total)	
			C2H3MgBr, C6H6, CuCl	(CH ₃ ) ₂ C=C(CO ₂ C ₂ H ₅ ) ₂	CO ₂ C ₂ H _s (50)	145
			C2H5MgBr, C6H6, CuOAc		CO ₂ C ₂ H ₃ (75)	145
		C ₆ H ₃ SO ₂ CH ₂ C(CH ₃ )=CHCH ₂ OH (E)	<i>n</i> -C₄H₂Li, THF, −70°, 30-40 min	-70°, 1 hr, then 0°	$\bigvee_{SO_2C_6H_5} (42)$	625
	C ₁₂		NaCH ₂ S(O)CH ₃ , CH ₃ S(O)CH ₃	-	- C ₆ H ₅ Na [*] (-) O ₂	71
		C ₆ H ₅	NaCH ₂ S(O)CH ₃ , CH ₃ S(O)CH ₃	÷	C ₆ H ₅ Na ⁺ (-)	71
			NaCH ₂ S(O)CH ₃ , CH ₃ S(O)CH ₃	≂.	- C ₆ H ₃ Na ⁺ (-)	71
		G ₂ C ₆ H ₅ O ₂	NaCH ₂ S(O)CH ₃ , CH ₃ S(O)CH ₃	<u> – «</u>	$ \begin{array}{c} O_2 \\ O_3 \\ O_4 \\ O_2 \end{array} $ (-)	71
		CHCH2SO2C6H5	ı-C₄H₀OK (2 eq), THF	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ , then OH ⁻		594
		<i>p</i> -CH ₃ C ₆ H ₄ SO ₂ CH ₂ CH=C(CH ₃ ) ₂	n-C4H9Li, THF	n-C ₆ H ₁₃ Br (1.25 eq), [(CH ₃ ) ₂ N] ₃ PO (1.25 eq). 0°	$p-CH_3C_6H_4SO_2CH(C_6H_{1,3}-n)CH \doteq C(CH_3)_2  (-)$	316a
249		$P-CH_3C_6H_4SO_2CH_2C(CH_3)=CHCH_2OH$ (E)	<i>n</i> -C₄H₂Li, THF, −70°, 30-40 min	-70°, 1 hr, then 0°	$So_2C_6H_4CH_3-p \qquad (41)$	625
			LDA, THF, 70°, 25 min, base added to the substrates	Br	SO ₂ C ₆ H ₄ CH ₃ -p (84)	625
		CH ₃ OCH ₂ CH=C(CH ₃ )CH ₂ SO ₂ C ₆ H ₅	$t-C_4H_9OK$ , THF, $-50^{\circ}$	CH ₂ Br	$ \begin{array}{c}                                     $	365
				-50°, 2.25 hr	$CH_2OCH_3  (86)$	365

249

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
	C ₁₁ (Contd.)	p-CH ₃ OC ₆ H ₄ SO ₂ CH ₂ C(CH ₃ )=CHCH ₂ OH (E)	n-C₄H₀Li, THF, −70°, 30-40 min	-70 , 1 hr. then 0"	OH SO ₂ C ₆ H ₄ OCH ₃ ·p (35-40)	625
		p-CF ₃ C ₆ H ₄ SO ₂ CH ₂ C(CH ₃ )=CHCH ₂ OH (E)	n-C₄H₂Li, THF, -70°, 30-40 min	Č	$\bigvee_{SO_2C_6H_4CF_3,p} (3.5)$	625
25		C ₆ H ₃ CH ₂ SO ₂ CH ₂ CH=CHSO ₂ C ₂ H ₃	Reflux, CH3OH	- 70°, 1 hr, then 0°	A, $C_6H_3CH_2SO_2CH = CHCH_2SO_2C_2H_5$	
õ					B, C ₆ H ₅ CH ₂ SO ₂ CH ₂ CH=CHSO ₂ C ₂ H ₅ A:60, B:40 (-)	555
	Cı3	C ₆ H ₃ CH ₂ SO ₂ C ₆ H ₅	n-C ₄ H ₉ Li (2.5 eq), THF, n-C ₆ H ₁₄ , 1 hr	D ₂ O C ₆ H ₃ CH ₂ Cl (2.4 eq), reflux 22 hr <i>n</i> -C ₄ H ₉ Br (2.5 eq), reflux 24 hr C ₄ H ₂ CO ₂ CH ₂ (1 eq), reflux 4 hr	$C_6H_5CRR'SO_2C_6H_5$ A, R = R' = D (95) $A, R = R' = CH_2C_6H_5$ (83) $A, R = R' = C_4H_9 \cdot n$ (72) $A, R = H, R' = COC_6H_5$ (63)	55, 121 55 55, 121 55
			n-C ₄ H ₉ Li, ether, 0°, 2 hr, then room temperature,	CO ₂	$A, R = H, R' = CO_2 H$ (65)	53
			1 hr CH ₃ MgI, ether, room temperature, 1 hr,	CO2	$A, R = H, R = CO_2 H  (28)$	53
			reflux 1.5 hr n-C₄H₂Li (2 eq), THF, 25°	, C₂H₅CHO	$C_6H_5SO_2C(C_6H_5) = CHC_2H_5$ (8)	122
			n-C4H9Li (2 eq), THF, 25°	$C_2H_3CHO$ , reflux 2 hr	$C_6H_5SO_2CH(C_6H_3)CH(OH)C_2H_3$ (-) $C_6H_5SO_2C(C_6H_3)=CRR'$ (E) and (Z)	
			25°, 1 hr	n-C3H7CHO, reflux 2 hr	A, R = H, R' = $C_2H_5$ (78) A, R = H, R' = $C_3H_7-\pi$ (70)	122 122
				C ₆ H ₅ CHO, reflux 2 hr	(E) and (Z) A, $\mathbf{R} = \mathbf{H}, \mathbf{R}' = \mathbf{C}_6 \mathbf{H}_5$ (75) (Z)	122
				$C_2H_3COCH_3$ , reflux 2 hr p-ClC ₆ H ₄ CHO, reflux 2 hr $n$ - $C_7H_{13}CHO$ , reflux 2 hr $C_6H_3COC_6H_3$ , reflux 2 hr CH ₃ COC ₆ H ₁₃ -n, reflux 2 hr	A, R = CH ₃ , R' = C ₂ H ₃ (50) (E) and (Z) A, R = H, R' = C ₆ H ₄ Cl-p (72) (Z) A, R = H, R' = C ₇ H ₁₅ -n (55) A, R = R' = C ₆ H ₅ (82) A, R = CH ₃ , R' = C ₆ H ₁₃ -n (50) (E) and (Z)	122 122 122 122 122
					$C_{6}H_{3}SO_{2}C(C_{6}H_{3})$ (65)	122
			n-C ₄ H ₉ Li, ether	C₄H₄CHO	$C_6H_5CHRSO_2C_6H_5$ A, R = CH(OH)C_6H_5	472
			n-C4H9Li, THF, n-C6H14, 30 min,	C6H3COC6H5 (1 eq), MgBr2 (2 eq)	erythro: 23, threo: 77 (59) A, R = C(OH)(C ₆ H ₅ ) ₂ (50)	453, 455
25			room temperature $n-C_4H_9Li$ , ether, 30 min,	C ₆ H ₅ COC ₆ H ₅ (1 eq), AlCl ₃ (2 eq)	A, $R = C(OH)(C_6H_5)_2$ (48)	455
			t-C ₄ H ₉ Li, THF, -78°, 30 min	CH ₂ CHCH ₃ , room temperature, 4 hr	$A, R = CH_2CH(OH)CH_3  (98)$	326
				CH ₂ CHC ₂ H ₅ , room temperature, 4 hr	$A, R = CH_2CH(OH)C_2H_5  (91)$	326
			LDA, TMEDA, THF,	BrCH ₂ CH=CHCO ₂ C ₂ H ₅ , -60°,	$C_6H_5SO_2$ $CO_2C_2H_5$ (61)	253a
			<i>i</i> -C ₃ H ₇ MgBr (1 eq), THF, 30 min,	C ₆ H ₅ COC ₆ H ₅ (1 eq)	$C_6H_5$ A, R = C(OH)(C ₆ H ₅ ) ₂ (52)	453, 455
			room temperature C ₆ H ₅ CH ₃ Ň(C ₂ H ₅ ) ₃ Cl ⁻ , CH ₂ Cl ₂ , 50% aqueous NaOH, room temperature, 6 hr,	С6Н3СНО	$C_6H_5SO_2C(C_6H_5) = CHC_6H_5  (49)$ (Z)	158
	l	CH ₂ SO ₂ C ₆ H ₃	LDA, TMEDA, THF, - 78°, then - 20°, 1 hr	BrCH ₂ CH=CHCO ₂ C ₂ H ₅ , $-78^{\circ}$ , then $-50^{\circ}$ , 1 hr	$\bigcup_{N} \bigcup_{CO_2C_2H_5} (75)$	253a

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₃ (Contd.)	CHCH2SO2C6H,	t-C₄H9OK (2 eq), THF	$(CH_3)_2C=CHCO_2C_2H_5$ , then $OH^-$		594
		Q →=CHCH₂SO₂C₀H₅	t-C₄H₀OK (2 eq), THF	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ , then OH ⁻		594
25		(CH ₃ ) ₂ C=CHCH(CO ₂ CH ₃ )SO ₂ C ₆ H ₅	NaH, THF, 25°, 20-24 hr	CO ₂ CH ₃ PdCl/ ₂	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	261
2				CO ₂ CH ₃	C ₆ H ₃ SO ₂ CH ₃ O ₂ C CO ₂ CH ₃ (80)	261
		C ₆ H ₃ SO ₂ CH ₂ C(CH ₃ )=CHCO ₂ C ₂ H ₃	t-C ₄ H ₉ OK (1 eq), THF, room temperature	(CH ₃ ) ₂ C=CHCH ₂ Br	A, $CO_2C_2H_s$ $SO_2C_6H_s$	
					$B, \underbrace{C_6H_5SO_2}_{C_6H_5SO_2} CO_2C_2H_5$	
					C. SO ₂ C ₆ H ₅	
					CO ₂ C ₂ H ₅ A: 54, B: 35, C: 11 (-)	147
				(CH ₃ ) ₂ C=CHCH ₂ Cl	A, SO ₂ C ₆ H ₅ (-)	
					B, SO ₂ C ₆ H ₅	
				. IF	CO ₂ C ₂ H ₅ A: 75. B: 25 (-)	147
				CH ₃ Br	+ CO ₂ C ₂ H ₅ (-)	184
					CO ₂ C ₃ H ₅	
253		(C ₂ H ₅ ) ₂ C=CHCH ₂ SO ₂ C ₆ H ₅	t-C₄H₃OK (2 eq), THF	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ , then OH ⁻		594
		<i>p-</i> (CH ₃ ) ₂ NC ₆ H ₄ SO ₂ CH ₂ C(CH ₃ )=CHCH ₂ OH	<i>n</i> -C₄H₀Li, THF, -70°, 30-40 min	Alera.	ОН SO ₂ C ₆ H ₄ N(CH ₃ ) ₂ <i>p</i> (57)	625
	C14	(C ₆ H ₃ CH ₂ ) ₂ SO ₂	KNH2 (2 eq), NH3 (liq),	$-70^{\circ}$ . 1 hr, then $0^{\circ}$ NH ₄ Cl	(C ₆ H ₅ CH ₂ ) ₂ SO ₂ (81)	134
			13-20 min	$C_6H_5CH_2Cl$ (1 eq), ether, then $NH_4Cl$ $C_6H_5CH_2Cl$ (2 eq), ether, then $NH_4Cl$ $C_6H_5CH=CHCO_2C_2H_5$ (1 eq),	C ₆ H ₃ CH ₂ CH(C ₆ H ₃ )SO ₂ CH ₂ C ₆ H ₃ (86) [C ₆ H ₃ CH ₂ CH(C ₆ H ₃ )] ₂ SO ₂ (77) C ₆ H ₃ CH(SO ₂ CH ₂ C ₆ H ₃ )CH(C ₆ H ₃ )CH ₂ CO ₂ C ₂ H ₃ (80–92)	134 134 134
			n-C4H9Li, THF	LiAlH ₄ , dioxane	$C_6H_3CH = CHC_6H_5  (56)$ cis: 1, trans: 1.8	418
			n-C₄H9Li (2.2 eq), THF	CH ₃ I CuCl ₂ , room temperature	C ₆ H ₃ CH ₂ SC ₄ H ₃ (23) C ₆ H ₃ CH(CH ₃ )SO ₂ CH(CH ₃ )C ₆ H ₃ (-) C ₆ H ₃ CH=CHC ₆ H ₃ cis: 1, trans: 6 (39)	418 418

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₄ (Conid.)	(C ₆ H ₅ CH ₂ ) ₂ SO ₂	n-C ₄ H ₉ Li (2.2 eq), THF, n-C ₆ H ₁₄ , 30 min,	C ₆ H ₅ COC ₆ H ₅ (1 eq), MgBr ₂ (2 eq), H ⁺	C ₆ H ₃ CH ₂ SO ₂ CH(C ₆ H ₅ )C(OH)(C ₆ H ₅ ) ₂ (42)	455
		room temperature i-C ₃ H ₇ MgBr (2 eq), THF, 30 min,	C ₆ H ₅ COC ₆ H ₅ (1 eq)	C ₆ H ₅ CH ₂ SO ₂ CH(C ₆ H ₅ )C(OH)(C ₆ H ₅ ) ₂ (56)	455
		i-C ₃ H ₇ MgBr (2 eq), or	C ₆ H ₅ COC ₆ H ₅	C ₆ H ₅ CH ₂ SO ₂ CH(C ₆ H ₅ )C(OH)(C ₆ H ₅ ) ₂ (42–56)	453
	p-CH ₃ C ₆ H ₄ SO ₂ CH ₂ C ₆ H ₅	$KNH_2$ , $NH_3$ (liq)	C6H3CH2Cl, NH3, ether	p-CH ₃ C ₆ H ₄ SO ₂ CHRC ₆ H ₅	596
		n-C4H9Li, THF, n-C6H14,	C6H3COC6H3 (1 eq), AlCl3 (2 eq)	A, $R = CH_2C_6H_5$ (91) A, $R = C(OH)(C_6H_5)_2$ (36)	455
		30 min, room temperature C ₂ H ₅ MgBr, C ₆ H ₅ OCH ₃	CH3ONH2	A, $R = NH_2$ (-) not isolated SO ₂ C, H.	403
	p-CH ₃ C ₆ H ₄ CH ₂ SO ₂ C ₆ H ₅	LDA, TMEDA, THF, -65°, 30 min	BrCH ₂ CH=CHCO ₂ C ₂ H ₅ , -60°, 30 min	$p-CH_3C_6H_4CH $ $(78)$ $CO_2C_2H_5$	253a
	m-CH ₃ C ₆ H ₄ CH ₂ SO ₂ C ₆ H ₃	LDA, TMEDA, THF, -65°, 30 min	BrCH ₂ CH=CHCO ₂ C ₂ H ₅ , -60°, 30 min	m-CH ₃ C ₆ H ₄ CH (72)	253a
	o-CH ₃ C ₆ H ₄ CH ₂ SO ₂ C ₆ H ₅	LDA, TMEDA, THF, 65°, 30 min	BrCH ₂ CH=CHCO ₂ C ₂ H ₅ , -60°, 30 min	о-CH ₃ C ₆ H₄CH (77)	253a
	C ₆ H ₃ CHBrSO ₂ CHBrC ₆ H ₃	(C2H3)3N, CH2Cl2	( <b>-</b> )	C ₆ H ₅ C ₆ H ₅ (70)	361
	CHCH2SO2C4H4	ſ-C₄H₀OK (2 cq), THF	$(CH_3)_2C = CHCO_2C_2H_5$ , then $OH^-$	CO ¹ H (-)	594
	CH ₂ =C(CH ₃ )CH(CH ₂ CH=CH ₂ )SO ₂ C ₆ H ₄ CH ₃ -p	<i>n</i> -C₄H ₉ Li, THF, −30°, 15 min, Cul (1 eq), 15 min	CH ₂ =CHCH ₂ Br CH ₂ =	$CHCH_{2}CH_{2}C(CH_{3}) = C(CH_{2}CH = CH_{2})SO_{2}C_{6}H_{4}CH_{3}p  (71)$ $CH_{2} = C(CH_{3})C(CH_{2}CH = CH_{2})_{2}SO_{2}C_{6}H_{4}CH_{3}p  (6)$ $(-)$	280
C15	( <i>i</i> -C ₃ H ₇ ) ₂ C=CHCH ₂ SO ₂ C ₆ H ₅	(-C4H9OK (2 cq), THP	$(CH_3)_2C = CHCO_2C_2H_3$ , then $OH$	(i-C ₃ H ₇ ) ₂ C=CHCO ₂ H	
	( <i>n</i> -C ₃ H ₇ ) ₂ C=CHCH ₂ SO ₂ C ₆ H ₅	1-C4H9OK (2 eq), THF	$(CH_3)_2C = CHCO_2C_2H_5$ , then $OH^-$	(n-C ₃ H ₇ ) ₂ C=CH (-)	594
Cie	CHCH2SO2C6H3	1-C₄H9OK (2 eq), THF	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅	CH	594
	CHCH ₂ SO ₂ C ₆ H ₃	r-C₄H9OK (2 eq), THF	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅	ССР_СС-) ССО2С2H3 (-)	594
	CH2SO2CeH3	n-C₄H9Li, THF, −78°	CO2	CH(CO ₂ H)SO ₂ C ₆ H ₅ ()	587
		<i>t</i> -C₄H₀Li, THF, −78°, 30 min	CH ₂ C(CH ₃ )CH=CH ₂	(98.5) SO ₂ C ₆ H ₅	326
		r-C ₄ H ₉ OK (3 eq), (CH ₃ ) ₂ NCHO, 25°, 0.25 hr	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ (2 eq)	(-)	148
	CH2SO2C*H	1-C₄H₀OK (3 eq), (CH₃)₂NCHO, 25°, 0.25 hr	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ (2 eq)	(-)	148
		<i>t</i> -C₄H ₉ Li, THF, −78°, 30 min	CH ₂ C(CH ₃ )CH=CH ₂	(100)	326
C17	$(\pi - C_5H_5)Fe(C_5H_4-\pi)CH_2SO_2C_6H_5$	n-C₄H₀Li (2 eq), THF-ether, 2:8. room temperature, 30 min	D ₂ O	$(\pi - C_5 H_5)Fe(C_5 H_4 - \pi)CRR'SO_2 C_6 H_5$ A, R = R' = D (95)	400



Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
CH2SO2C4H9-r	1-C4H9OK, THF, -12°	CICH ₂ CH ₂ O ₂ CCH ₃ , -50°, then room temperature, 20 min	CH ₂ O ₂ CCH ₃ (-)	306
CH,SO2CH2	KOH, CCl4, room temperature	-	CH=CH (69)	358
(C ₆ H ₅ ) ₂ C=CHCH ₂ SO ₂ C ₆ H ₅	t-C4H9OK (2 eq), THF	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ , then OH ⁻	(C ₆ H ₅ ) ₂ C=CH (-)	594
CH2SO2C6H2Cl3-o.m.p	t-C₄H₅OK, THF, −10°, 5 min	CICH ₂ 5°, 25 min	$\underbrace{CH_{2}O_{2}CCH_{3}}_{SO_{2}C_{6}H_{2}CI_{3}\circ\sigma,m,p} $ (29)	306
CH ₃ SO ₂ C ₆ H ₃	C₀H₃CH₂ṫ(CH₃)₃OH⁻, CH₃CN	CH ₂ =C(CH ₃ )CH=CHSO ₂ C ₆ H ₃	$\bigcup_{O}^{CH_2SO_2C_6H_5} CH_2SO_2C_6H_5 \tag{54}$	365
CH2SO2C6H3	NaH, (CH ₃ ) ₂ NCHO, -5°, 15 min	$CICH_{2}C(CH_{3}) = CHCH_{2}O_{2}CCH_{3},$ (E)	CHRSO ₂ C ₆ H ₅	
$\sim$	r-C₄H₀OK (1 eq), THF,	10°, 75 min BrCH ₂ C(CH ₃ )=CHCO ₂ CH ₃	A, $R = CH_2C(CH_3) = CH_2O_2CCH_3$ (73) A, $R = CH_2C(CH_3) = CHCO_2CH_3$ (98)	306 184
	-65° to -60° t-C ₄ H ₉ OK, THF, -73°	CICH ₂ CH=C(CH ₃ )CH ₂ Cl, (E) $-73^{\circ}$ , 4 hr, then $-30^{\circ}$ , 2 hr	$A, R = CH_2CH = C(CH_3)CH_2CI  (90)$	364
	1-C4H9OK, THF, - 50°	$CICH_2C(CH_3) = CHCH(OC_2H_5)_2,$ (E)	A, $R = CH_2C(CH_3) = CHCH(OC_2H_5)_2$ (72)	365
	t-C4H9OK, THF, - 30°	$-50^{\circ}$ , 30 min, $-20^{\circ}$ , 2 hr, 0°, 3 hr CICH ₂ C(CH ₃ )=CHCH ₂ O ₂ CCH ₃ , (E) $-30^{\circ}$ 5 hr	A, $R = CH_2C(CH_3) = CHCH_2OCOCH_3$ (65)	365
		$CiCH_2C(CH_3) = CHCH_2OCH_3,$ (E) $-30^\circ 2 hr$	A, $\mathbf{R} = CH_2C(CH_3) = CHCH_2OCH_3$ (85)	365
		$CiCH_2CH=C(CH_3)CH_2Cl (0.5 eq)$ (E)	$A, R = CH_2 $ (73)	364,365
	t-C₄H ₉ OK, THF, -30°, 10 min	$CH_2 = CHC(CH_2CI) = CH_2, -30^\circ, 5 hr$	$A, R = CH_2C(CH=CH_2)=CH_2  (81)$	332
		CICH2CH=C(CH3)CH2CI	$SO_2C_6H_5$ $A, R = CH_2$ (73)	365
		(E) CICH ₂ C(CH ₃ )=CHCH ₂ SO ₂ C ₆ H ₅ , (E)	A, R = CH ₂ C(CH ₃ )=CHCH ₂ SO ₂ C ₆ H ₅ (89.5)	365
	t-C₄H₂Li, THF, -78°, 30 min	$CH_2C(CH_3)CH=CH_2$	A, $R = CH_2C(CH_3)(OH)CH=CH_2$ (93)	326
	$C_6H_3CH_2^{\uparrow}(CH_3)_3OH^-$ , $CH_3CN$ , room temperature, 2 hr	CH ₂ =CHC(CH ₃ )=CHSO ₂ C ₆ H ₃	A, R = CH ₂ CH=C(CH ₃ )CH ₂ SO ₂ C ₆ H ₅ (68) (E) (68)	364
CH ₂ SO ₂ C ₆ H ₅	r-C ₄ H ₉ OK (3 eq), (CH ₃ ) ₂ NCHO, 25°, 0.25 hr	(CH ₃ ) ₂ C=CHCO ₂ C ₂ H ₅ (2 eq)	(48)	148
	Reactant $ \begin{pmatrix} \downarrow \\ \downarrow \\$	ReactantData and Conditions $\int (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)$	ReactantConditionsQuenching Reagent $(\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_2,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,\zeta,H_1,$	$\begin{array}{c c} \operatorname{Reactant} & \operatorname{Conditions} & \operatorname{Quenching Reagent} & \operatorname{Product(s) and Yield(s)}(f_{2}) \\ \\                                 $



	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₂₆	CH ₂ SO ₂ C ₆ H ₅	CH ₃ OK, ether-[(CH ₃ ) ₂ N] ₃ PO, 1:1, -20°	CICH ₂ C(CH ₃ )=CHCO ₂ CH ₃ , -20°, 2.5 hr	K SO ₂ C ₆ H ₅	
			t-C₄H9OK, THF, −70°	$CICH_2CH=C(CH_3)CH_2CI,$ (E)	A, $R = CH_2C(CH_3) = CHCO_2CH_3$ (71) A, $R = CH_2CH = C(CH_3)CH_2CI$ (98)	365 364
262				$-70^\circ$ , 5 hr CICH ₂ CH=C(CH ₃ )CH ₂ OC ₄ H ₉ -t, (E)	$A, R = CH_2CH = C(CH_3)CH_2OC_4H_9 - t  (-)$	364
			t-C₄H9OK, THF, −30°, 10 min	$-71^{\circ}$ , 15 hr, then $-50^{\circ}$ , 3.75 hr CICH ₂ C(CH ₃ )=CHCH ₂ SO ₂ C ₆ H ₅ , (E) $-70^{\circ}$ 2.5 hz	A, $\mathbf{R} = CH_2C(CH_3) = CHCH_2SO_2C_6H_3$ (84)	365
			1-C4H9OK, THF, -25°	$-30^{\circ}$ , $3.5 \text{ hr}$ CICH ₂ CH=C(CH ₃ )CH ₂ SO ₂ C ₆ H ₅ , (E)	A, $R = CH_2CH = C(CH_3)CH_2SO_2C_6H_5$ (70)	364
			r-C ₄ H ₉ OK, THF, 0°, 6 min	$(-15^{\circ}, 7.5 \text{ hr}, \text{then } -70^{\circ}, 16 \text{ hr}$ $CICH_2C(CH_3)=CHCH_2O_2CCH_3,$ (E) $18^{\circ}, 3 \text{ hr}$	$A, R = CH_2C(CH_3) = CHCH_3O_2CCH_3  (67)$	365
			ı-C₄H9OK, THF, 14°	-30°, 10 min, 5°, 1.5 hr	CH ₂ Br,	
					$A, R = CH_2 $	322
			r-C4H9OK, THF, -30°	-10°, 3 hr	CH ₂ Cl	322
2		CH2SO2C6H3	t-C₄H ₉ OK (3 eq), (CH ₃ )₂NCHO, 25°, 0.25 hr	(2 eq)	$\begin{array}{c} \mathbf{A}, \mathbf{K} = \mathbf{C}\mathbf{H}_{2} \\ \mathbf{H}_{2} \\ \mathbf{H}_{2} \\ \mathbf{H}_{3} \\ \mathbf{H}_{4} $	148, 328
63	C30	$\begin{bmatrix} & CH_2 \\ & & T \end{bmatrix}^T SO_2$	KOH, CCI4, room temperature	-	+ (22) + (22) (40) $CO_2C_2H_5$ (40) CH=CH CH=CH	358



TABLE XXXIII. SULFONIC ESTERS

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C13	C ₆ H ₅ CH(CH ₃ )SO ₃ CH ₂ C ₄ H ₉ -t	$n-C_4H_9Li$ , THF, -78°, 15 min	$CH_{3}I,$ - 78°, 1-2 hr	C ₆ H ₅ C(CH ₃ ) ₂ SO ₃ CH ₂ C ₄ H ₉ -t (89.8)	54
			$n-C_{3}H_{7}Br$ , - 78°, 12 hr	$C_6H_5C(CH_3)(C_3H_7-n)SO_3CH_2C_4H_9-t$ (-)	54

No. of C Aton	ns Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
c.	CH2=CHCH2SOCH3	1-C4H9OK, 1-C4H9OH,	-	A, CH2=CHCH2SOCH3	
		$(C_2H_3)_3N$ , reflux, 18 hr	<u>~</u>	B, CH ₃ CH=CHSOCH ₃ A: 20, B: 80 (-) A: 43, B: 57 (-)	522 522
	chjch-choochj	room temperature, 1 hr (C.H.).N reflux 18 hr	-	A: 13, B: 67 (-)	522
	$\checkmark$	(Cirigini renax, to m			
C ₆	( s	$n-C_4H_9Li$ , TMEDA, THF, - 50°, then - 20°, 2 hr	сн,снсн,	CH ₂ CH(OH)CH ₃ (-)	481
с, 266	n-C3H7CH2CH=CHSOCH3	r-C ₄ H ₉ OK, r-C ₄ H ₉ OH, room temperature, 4 hr	-	A, $n$ -C ₃ H ₂ CH=CHCH ₂ SOCH ₃ + B, $n$ -C ₃ H ₂ CH ₂ CH=CHSOCH ₃ A: 96, B: 4 (-) D	522
C ₈	50	NaOD, D ₂ O	нсі	So (-)	471
	D	CH3Li (2.2 eq), THF, 0°	DCI	(1.5 D) (-)	471
	50	CH3Li (1.1 eq), THF, 0°	нсі	SO ()	471
	C ₆ H ₃ CH ₂ SOCH ₃	NaOD, D ₂ O	<u></u>	C ₆ H ₂ CHDSOCH ₃ (-)	341, 60
		1-C4H9OLi, CD3SOCD3, 24°	D20 D30	RS: 1.7, SS: 1 (-) RS: 0.11, SS: 1 (-)	51 51
		-60° -20° 24°	D ₂ 0	RS: 0.065, SS: 1 (-) RS: 0.080, SS: 1 (-) RS: 0.13, SS: 1 (-)	51 51 51
		n-C∡H₀Li (1.1 ea), THF.	D,0	C₄H₄CHDSOCH, (−)	292, 510
		- 70°	СН31	threa C ₆ H ₃ CH(CH ₃ )SOCH ₃ ()	290, 292
			сн,сосн,	C ₆ H ₃ CH(SOCH ₃ )C(OH)(CH ₃ ) ₂ threo	292
			02	C ₆ H ₅ CH(CO ₂ H)SOCH ₃ (30) threo	292
		Ch32, 111, -00, 100	CH-1	RS: 1, SS: 15 C-H-CH(CH)SOCH_ (76)	287 280
			сн,сосн.	RS: 15, SS: 1 C-H-CH(SOCH)C(OH)(CH.)- (75)	287, 287
				OH CH(C ₆ H ₅ )SOCH ₃	207
		CH Li LiCl (1 Lee) THE	$\bigvee$		287
		-60°, 1 min CH ₃ Li, LiBr (1.1 eq), THF, -60°, 1 min	D ₂ O	<i>RS/SR</i> : 1, <i>RR/SS</i> : 15 (-) <i>RS/SR</i> : 1, <i>RR/SS</i> : 3 (-)	288
200.02		CH ₃ Li, LiCl (1.1 eq), THF, -60°, 1 min	сн,	C ₆ H ₅ CH(CH ₃ )SOCH ₃ SR/RS: 15, RR/SS: 1 ()	288
ථ 267	CH ₂ =CHCH ₂ SOC ₆ H ₅	<i>n</i> -C ₄ H ₉ Li, THF, -50°	CH ³ I	A, $CH_2 = CHCHRSOC_6H_5$	
		LDA, THF, -60°, 15 min	CH ₃ I C ₂ H ₃ I CH.=CHCH ₃ Br	B, RCH ₂ CH=CHSOC ₆ H ₃ A:1, B:0, R = CH ₃ ( $-$ ) A: 5.6, B: 1, R = CH ₃ ( $-$ ) A: 2.9, B: 1, R = C ₂ H ₃ ( $-$ ) A: 1.3, B: 1, R = CH ₂ CH=CH ₃ ( $-$ )	308 225 225 225
	C ₆ H ₅ CH(CH ₃ )SOCH ₃ RS and SR	NaOD, D ₂ O, 50°		$C_6H_5CD(CH_3)SOCH_3$ RS/SR: 1, RR/SS: 2, (-)	390
C10	CH2=C=CHSOC6H4CH3-p	(CH ₃ CuCH ₃ )Li, THF-ether, 1:1, -20°, 20 min	C ₆ H ₅ CH=CHCOC ₆ H ₅	$C_6H_5CH = CHC(OH)(C_6H_5)CH_2C(CH_3) = CHSOC_6H_4CH_3-p$ (42)	166
	CH2=CHCH(CH3)SOC6H5	LDA, THF, -60°, 15 min	CH31	A, $CH_2 = CHCR(CH_3)SOC_6H_5$	
	CH2=C(CH3)CH2SOC6H3	LDA, THF, -60°, 15 min	C ₂ H ₃ I (CH ₃ ) ₂ C=CHCH ₂ Br (CH ₃ ) ₂ C=CHCH ₂ CH ₂ I CH ₃ I	B, RCH ₂ CH=C(CH ₃ )SOC ₆ H ₅ A: 2.6, B: 1, R = CH ₃ (-) A: 2.4, B: 1, R = C ₂ H ₅ (-) A: 1.1, B: 1, R = CH ₂ CH=C(CH ₃ ) ₂ (-) A: 1, B: 0, R = (CH ₂ ) ₂ CH=C(CH ₃ ) ₂ (-) A, CH ₂ =C(CH ₃ )CHRSOC ₆ H ₅	271 271 271 271
			n-C ₆ H ₁₃ I (CH ₃ ) ₂ C=CHCH ₂ Br <i>p</i> -CH ₃ C ₆ H ₄ CH(CH ₃ )(CH ₃ ) ₂ I	$ \begin{array}{c} + \\ B, RCH_2C(CH_3) = CHSOC_6H_5 \\ A: 10, B: 1, R = CH_3  (-) \\ A: 2.5, B: 1, R = C_6H_{1,2} \cdot n  (-) \\ A: 2, B: 1, R = C_6H_{1,2} \cdot n  (-) \\ A: 2, B: 1, R = (CH_2)CH=C(CH_3)_2  (-) \\ A: 2, B: 1, R = (CH_2)_2CH(CH_3)C_6H_4CH_3 \cdot p  (-) \end{array} $	271 271 271 271

#### TABLE XXXIV. SULFOXIDES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C10	CH ₃ CH=CHCH ₂ SOC ₆ H ₅	LDA, THF, -60°, 15 min	СН3	A, CH ₃ CH=CHCHRSOC ₆ H ₅	
C ₁₁	CH ₃ CH=C=CHSOC ₆ H ₄ CH ₃ .p	(CH ₃ CuCH ₃ )Li	C₂H₃I NH₄CI	+ B, R(CH ₃ )CHCH=CHSOC ₆ H ₃ A: 10, B: 1, R = CH ₃ (-) A: 6.7, B: 1, R = C ₂ H ₃ (-) CH ₃ CH=C(CH ₃ )CH ₂ SOC ₆ H ₄ CH ₃ -p cls: 34, trans: 66 (69)	225 225 166
		LDA, THF, -60°, 15 min	CH31		
268	OH Soc,H,	(C₂H₅)₂NLi, THF, −40°, 30 min	$C_2H_5I$ $CH_2 = CHCH_2Br$ $n - C_6H_{1,3}I$	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	225 225 225
			C ₆ H ₃ CH ₂ Br C ₆ H ₃ CH=CHCH ₂ Br	A, $R = CH_2C_8H_5$ (-) A, $R = CH_2CH=CHC_8H_5$ (-) O	140
	(CH ₃ ) ₂ C=CHCH ₂ SOC ₆ H ₅	LDA, THF, -60°, 15 min	$\begin{array}{c} & & \\ & & \\ O & (CH_2\%1) \\ I(CH_2)_0CO_2C_4H_{9} \cdot t \\ BrCH_2C \equiv C(CH_2)_3CO_2C_4H_{9} \cdot t \\ n \cdot C_6H_{1,3}I \end{array}$	A, R = $(CH_2)_6 \leftarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ A, R = $(CH_2)_6 CO_2 C_4 H_{9^{-1}}$ (-) A. R = $CH_2 C \equiv C(CH_2)_5 CO_2 C_4 H_{9^{-1}}$ A, $(CH_3)_2 C \equiv CHCH(C_6 H_{13^{-n}})SOC_6 H_5$ +	140 140 140
	CH2=C(CH3)CH2SOC6H4CH3-p	n-C4H9Li, THF, —40°	C2H3I n-C4H9I	B, $n - C_6 H_{13} C(CH_3)_2 CH = CHSOC_6 H_5$ A: 10, B: 1 () CH ₂ =C(CH ₃ )CHRSOC ₆ H ₄ CH ₃ ·p A, R = C ₂ H ₅ () A, R = C ₄ H ₉ ·n (90)	225 307 307
		n-C ₄ H ₉ Li, THF, -30°, 15 min CuI (1 eq) added, 15 min	CH ₃ I CH ₃ =CHCH ₂ Br C ₆ H ₅ CHO C ₆ H ₅ CH=CHCOC ₆ H ₅ CH ₃ I	A, R = CH ₃ (98) A, R = CH ₂ CH=CH ₂ (40) RCH ₂ C(CH ₃ )=CHSOC ₆ H ₄ CH ₃ - $p$ A, R = CH(OH)C ₆ H ₃ (36) A, R = C(OH)(C ₆ H ₃ )CH=CHC ₆ H ₅ (20) CH ₂ =C(CH ₃ )CH(CH ₃ )SOC ₆ H ₄ CH ₃ - $p$ (60)	280 280 280 280 280 280
			C ₆ H ₃ CH=CHCOC ₆ H ₃	$C_6H_3CH=CHC(OH)(CH_3CH=CH_2)SOC_6H_4CH_3P(20)$ $C_6H_3CH=CHC(OH)(CH_3CH=CH_2C(CH_3)=CHSOC_6H_4CH_3P(-)$ $+$	280
		CH ₃ Li (1 eq), THF, -70°, 30 min, CuI (1 eq), -20°,	C ₆ H ₅ CH=CHCOC ₆ H ₅	$C_{6}H_{3}COCH_{2}CH(C_{6}H_{3})CH_{2}C(CH_{3})=CHSOC_{6}H_{4}CH_{3}-p  (iraces_{7}C_{6}H_{3}CH=CHC(OH)(C_{6}H_{3})CH_{2}C(CH_{3})=CHSOC_{6}H_{4}CH_{3}-p  (20)$	166
	C ₆ H ₅ CH ₂ SOC ₄ H ₉ - <i>i</i> S	$CH_3Li$ , THF, $-60^\circ$ , 1 min	D ₂ O	C6H5CHDSOC6H9-1 (90) RS: 99, SS: 1	287
	15-1 1		CH ³ I	C ₆ H ₃ CH(CH ₃ )SOC ₄ H ₉ -t (95) RS: 1, SS: 99	287
	C ₆ H ₅ CHDSOC ₄ H ₉ -1	<i>n</i> -C ₄ H ₉ Li, THF, -70°	сн ₃ сосн ₃ Н ₂ о	$C_6H_3CH_2COH(CH_3)_2SOC_4H_9-7$ (77) $C_6H_3CH_2SOC_4H_9-7$ (-)	297
150	RS, SR SS	CH3Li, THF, -60°	Н2О СН3I	$C_6H_3CHDSOC_4H_9-t$ (-) A, $C_6H_3CH(CH_3)SOC_4H_9-t$	291
269 C.,	so	CH,ONs, CH,OD	_	B, $C_{s}H_{3}CD(C_{4}H_{9}-i$ A: 97.9, B: 2.1 (-) D SO	287
	irans	(35 1) 877		$cis \alpha_{\rm B}: 6.7, trans \alpha_{\rm B}: 1  (-)$	406
	cis Soc _s H ₃	LDA, THF, -60°, 15 min	СН3І	$cis \alpha_0: 16, trans \alpha_0: 1 (-)$ A, SOC ₆ H ₅ +	406 225
				B, SOC.H.	

A: 10, B: 1 (-)

TABLE	XXXIV.	SULFOXIDES	(Continued)
		0000 070000	(continued)

No. of C	Peactant	Base and Conditions	Quenching Respont	Product(c) and Viold(c) (%)	Pafa
Atoms	Keactain	base and Conditions	Quenening Reagent	Froduct(s) and Freid(s) (7%)	Keis.
C ₁₁ (Contd.)	So So	sec-C4H9Li, THF, -40°	BrCH ₂ C(CH ₃ )=CHCO ₂ CH ₃	SO SO CO ₂ CH ₃ (-)	142
P.C.1 27	n-C8H17CH=CHCH2SOCH3	r-C ₄ H ₉ OK, r-C ₄ H ₉ OD,	=	$n-C_{a}H_{1,7}CD=CHCD_{2}SOCH_{3}$ (-)	523
C ₁₃	C ₆ H ₅ CH ₂ SOC ₆ H ₅	CH ₃ Li, THF, -60°, 1 min	D ₂ O	$C_6H_5CHRSOC_6H_5$ A B = D (80)	287
			CH3I	$A, R = CH_3$ (79)	287
270			$\bigcirc^{\circ}$	$A, R = \tag{85}$	287
		$n-C_4H_9Li$ , ether, 15 min LICA, CH ₃ OCH ₂ CH ₂ OCH ₃ , $0^\circ$ 1 br	C ₆ H ₅ CO ₂ CH ₃ <i>i</i> -C ₃ H ₇ I, 20°, 20 hr	A, R = $COC_6H_5$ (24) A, R = $C_3H_5 \cdot i  (-)$	472 141
			C ₆ H ₅ CH ₂ Br, 20°, 1 hr	$A, R = CH_2C_6H_5  (-)$	141
			20°, 3 hr	A, R = $(CH_2)_2CH(CH_3)(CH_2)_2CH=C(CH_3)_2$ (-)	141
			$(CH_2)_2I$ , $20^\circ$ , 4 hr	$\mathbf{A}, \mathbf{R} = \underbrace{\mathbf{CH}_{2}}_{\mathbf{CH}_{2}} \underbrace{\mathbf{CH}_{2}}_{\mathbf{O}} (-)$	141
			CH2Br.	$\mathbf{A}, \mathbf{R} = \bigcup_{\mathbf{CH}_2} (-)$	141
			20°, l hr	14 Mar Well Schedular Schedul (1996)	
		n-C ₄ H ₉ Li (2.6 eq), THF, n-C ₆ H ₁₄ , 0°, 15 min	D ₂ O	C ₆ H ₅ CD ₂ SOC ₆ H ₅ (95)	55
	p-CIC ₆ H ₄ SOCH ₂ C ₆ H ₅	NaOD, D ₂ O, dioxane		p-CIC ₆ H ₄ SOCHDC ₆ H ₅ (-) aauche proton exchanged faster	517
	CH ₂ SOC ₆ H ₃			SOC ₆ H ₅	202
		LDA, TMEDA, THF, -78° then -20°, 1 hr	BrCH ₂ CH=CHCO ₂ C ₂ H ₅ , -78°, then - 50°, 1 hr	V CO₂C₂H₅ (53)	253a
	n-C ₉ H ₁₉ CH ₂ CH=CHSOCH ₃	I-C4H9OK, I-C4H9OH, room temperature, 5 hr	-	A, $\pi$ -C ₉ H ₁₉ CH=CHCH ₂ SOCH ₃ + B $\pi$ -C ₂ H ₂ CH ₂ CH=CHSOCH ₂	522
		N=OD D O	_	A: 96, B: 4 $(-)$	531
		room temperature, 66 hr			521
				A: 2, B: 8 (-)	521
		1-C4H9OK, 1-C4H9OH,		A, $n-C_9H_{19}CH=CHCH_2SOCH_3$	221
		room temperature, 5 nr		B. $n$ -C ₁₀ H ₂₁ CH=CHSOCH ₃	523
	n-C ₉ H ₁₉ CH=CHCH ₂ SOCH ₃	NaOD, D ₂ O, room temperature, 64 hr		$n - C_9 H_{19} CH = CHCD_2 SOCH_3$ (85)	521
N C14		LICA, CH3OCH2CH2OCH3.	$\bigwedge$		141
71	O CH2SOC6H	0°, 1 hr	CH ₂ Br	CH2CH(SOC ₆ H ₃ )	
	C ₆ H ₃ CH ₂ SOCH ₂ C ₆ H ₃	n-C ₄ H ₉ Li (2 eq), THF, -78°, 30 min	D ₂ O	C ₆ H ₃ CHDSOCHDC ₆ H ₃ (-)	455
		n-C4H9Li (2 eq), THF, 25° 30 min	н*	C ₆ H ₃ CH=CHC ₆ H ₅ (61) trans	455
		KNH ₂ , NH ₃ (liq) <i>t</i> -C ₄ H ₉ OK, (CH ₃ ) ₂ NCHO, 80°, 20 hr	H. -	$C_6H_5CH_2SOCH_2C_6H_3$ (-) $C_6H_3CH=CHC_6H_3$ (50) cis: 1, trans: 12	454 598, 599
	₽-CH ₃ C ₆ H ₄ SOCH=	KH. THF. 0°. 1 hr	СН-ОН	CH2SOC6H4CH3-p (-)	154
с	P-CH_C_H_SOCH=CHC_H	KH. THF. 0°. 1 hr	СН-ОН	P-CH.C.H.SOCH.CH=CHC.H+ (-)	154
C16	p-CH ₃ C ₆ H ₄ SOCH=CHCH ₂ C ₆ H ₅ cis and trans	KH, THF, 0°, 1 hr	СН3ОН	p-CH ₃ C ₆ H ₄ SOCH ₂ CH=CHC ₆ H ₅ (-) cis and trans	154

TABLE XXXV. SULFOXIMINES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C ₂₀	$C_6H_5CH_2SO(C_6H_5)=NSO_2C_6H_4CH_3-p$	NaOH, dioxane-D ₂ O, 10:1	. —	$C_6H_5CD_2SO(C_6H_5) = NSO_2C_6H_4CH_3-p$ (-)	52

TABLE XXXVI. TELLURIDES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C,	HC≡CCH2TeC6H5	C ₆ H ₅ TeMgBr	( <del></del> )	CH2=C=CHTeC6H5 (27)	61, 538

# TABLE XXXVII. THIOCARBAMATES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
<b>C</b> ₇	$CH_3CH = CHCH_2SCON(CH_3)_2$	LDA, THF, -78°	CH ₃ SSCH ₃	$CH_{3}CH = CHCH(SCH_{3})SCON(CH_{3})_{2}  (-)$	258Ъ
C ₈	$CH_{3}CH = CHCH(SCH_{3})SCON(CH_{3})_{2}$ $(E)$	LDA, THF, -78°	n-C ₄ H ₉ I	$CH_{3}CH = CHC(SCH_{3})(C_{4}H_{9}-n)SCON(CH_{3})_{2}  (-)$ $(E)$	258b
C10	$n-C_4H_9CH=CHCH_2SCON(CH_3)_2$ (E)	LDA, THF, -78°	CH ₃ SSCH ₃	$n-C_4H_9CH = CHCH(SCH_3)SCON(CH_3)_2$ (-)	258a
	$n-C_3H_7C(CH_3) = CHCH_2SCON(CH_3)_2$ (E) and (Z)	LDA (2 eq), THF, -78°	CH ₃ SSCH ₃ (2 eq)	$n-C_3H_7(CH_3) = CHC(SCH_3)_2SCON(CH_3)_2$ (-) (E) and (Z)	258Ь
C11	$n-C_5H_{11}CH = CHCH_2SCON(CH_3)_2$ (E)	LDA, THF, -78°	CH ₃ SSCH ₃	$n-C_5H_{11}CH = CHCH(SCH_3)SCON(CH_3)_2$ (-) (E)	258a, 258b
	1. S	LDA (2 eq), THF, -78°	CH ₃ SSCH ₃ (2 eq)	$n-C_{5}H_{11}CH = CHC(SCH_{3})_{2}SCON(CH_{3})_{2}$ (-) (E)	258b
C12	$n-C_5H_{11}CH = C(CH_3)CH_2SCON(CH_3)_2$ (E)	LDA, THF, -78°	CH ₃ SSCH ₃	$n-C_5H_{11}CH = C(CH_3)CH(SCH_3)SCON(CH_3)_2 (-)$	258a
	$n-C_6H_{13}CH = CHCH_2SCON(CH_3)_2$ (E)	LDA, THF, -78°	CH ₃ SSCH ₃	$n-C_6H_{13}CH = CHCH(SCH_3)SCON(CH_3)_2$ (-) (E)	258b
		LDA (2 eq), THF, -78°	CH ₃ SSCH ₃ (2 eq)	$n-C_6H_{13}CH = CHC(SCH_3)_2SCON(CH_3)_2$ (-) (E)	258Ь
	$n-C_5H_{11}CH = CHCH(SCH_3)SCON(CH_3)_2$ (E)	LDA, THF, -78°	n-C4H9I	$n-C_{5}H_{11}CH = CHC(SCH_{3})(C_{4}H_{9}-n)SCON(CH_{3})_{2}$ (E)	258b





ield(s) (%) Refs.
132
132
H ₇ -i)CH=CH ₂ 132
SH (38) 132
(17) 234 CH ₂ OH (88) 316
CH ₂ OH (61) 316 H)(CH ₂ ) (62-66) 276
(-) 193
C=CH ₂ (-) 351
(82) 228b
(54) 228b (31) 228b
Y7 I_0 -7 I_0

# TABLE XXXVIII. THIOETHERS

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
Cs (Contd.)	C ₂ H ₃ C≡CSCH ₃ CH ₃ C≡CSC ₂ H ₃	NaNH2, NH3 (liq) NaNH2, NH3 (liq), 1 min NaNH2, NH3 (liq) LiNH2, NH3 (liq), 3 min	$C_{s}H_{3}Br$ $H_{2}O$ $C_{s}H_{3}Br$ $CH_{3}COCH_{3}$ $C_{3}H_{3}COCH_{3}$ $O$	$HC \equiv CCH(CH_3)CH_2SC_6H_5 (29)  CH_2 = C = CHSC_2H_5 (70-75)  HC \equiv CCH_3CH(CH_3)SC_6H_5 (18)  CH_2 = C = C(SC_2H_5)R  A, R = C(OH)(CH_3)_2 (72-75)  A, R = C(OH)(CH_3)C_2H_5 (72-78)  A, R = (71-72)  OH  A, R = (71-75)  (71-75)$	234 133 234 276 276 276
	HC≡CCH ₂ SC ₂ H ₅	KOH (2-4 eq), THF, 20°, 210 min	-	$HC \equiv CCH_2SC_2H_5  (1)$ $HC \equiv CCH_2SC_2H_5  (-)$ $CH_2 = C \equiv CHSC_2H_5  (-)$ $CH_2 = C \equiv CSC_2H_5  (-)$	536
		KOH (pellets, 2 eq), THF, 55°, 30 min C2H3ONa (0.1 eq), C2H3OH,	=: =:	$CH_{3}C \equiv CSC_{2}H_{3}  (66)$ $CH_{2}=C=CHSC_{2}H_{3}  (43)$	61, 536 61, 538
	CH,=C=CHSC,H,	70°, 12 min NaNH ₂ , NH ₃ (lig)	C ₂ H ₄ Br	CH_=C=C(C_1H_1)SC_1H_1 (70-75)	133
	CH2=CHCH28CH=CH2	sec-C4H9Li, THF, - 78°	i-C ₃ H ₇ Br C ₆ H ₅ CH ₂ Br	$CH_{2} = C = C(SC_{2}H_{3})C_{3}H_{7} - i  (70-75)$ $CH_{2} = CHCHRSCH = CH_{2}$ $A, R = CH_{2}C_{2}H_{3}  (85)$ $A, R = CH_{2}C_{3}H_{3}  (85)$	133 129 129
			CH ₂ Br	$A, R = CH_2$	129
	s	n-C₄H₂Li (1.2 cq), TMEDA, THF49°	$C_6H_5CH_2Cl$ , -49°, 2 hr	A. $(58), B$ (24), R = CH ₂ C ₆ H ₅	278
		sec-C₄H₀Li (1.2 to 2 eq). THF, −78°	<i>n</i> -C₄H ₉ Cl. – 78°, 2 hr <i>n</i> -C₄H ₉ Br. – 78°, 90 min <i>n</i> -C₄H3I. – 78°, 45 min	A (69), B (1), $R = C_4 H_9 \cdot n$ A (73), B (7), $R = C_4 H_9 \cdot n$ A (70), B (30), $R = C_4 H_9 \cdot n$	278 278 278
	CH SC=CCH OCH	1D4 THE _60° 1 br	$C_{6}H_{3}CH_{2}Cl, -78^{\circ}, 2 hr$ $ClCH_{2}CHCH, -78^{\circ}, 1 hr$ O $CH_{3}CHCH_{2}, -78^{\circ}, 3 hr$ $n-C_{6}H_{13}CHO, -78^{\circ}$ $n-C_{6}H_{13}COCH_{3}, -78^{\circ}, 2.25 hr$ H	A (62), B (25.7), R = $CH_2C_6H_3$ A (95), B (trace), R = $CH_2CH_2CH_2$ A (36), B (17), R = $CH_2CH(OH)CH_3$ A (0), B (94), R = $CH(OH)C_6H_{13}$ -n A (0), B (73), R = $C(OH)(CH_3)C_6H_{13}$ -n CH SCP_C-CHOCH	278 278 278 278 278 278 278
			C ₂ H ₃ Br ClCH ₂ CH ₂ O THP BrCH ₂ CH ₂ OTHP <i>i</i> -C ₃ H ₇ Br <i>i</i> -C ₃ H ₇ Br, [(CH ₃ ) ₂ N] ₃ PO (1 eq) <i>n</i> -C ₅ H ₁₁ I	A, R = CH ₃ (73) A, R = CH ₃ (73) A, R = CH ₂ CH ₂ OTHP (93) A, R = CH ₂ CH ₂ OTHP (82) A, R = C ₃ H ₇ -i (54) A, R = C ₃ H ₇ -i (56) A, R = C ₃ H ₁ -n	136 136 136 136 136 136 136
	s s	n-C4H9Li, THF, -70°, 2 hr	CH ³ I	≤	513
	CH ₃ CH=CHSC ₂ H ₃	KNH ₂ , NH ₃ (liq)	n-C ₄ H ₉ Br	$CH_2 = CHCH(C_4H_9-n)SC_2H_5$	352
	CH ₂ =CHCH ₂ SC ₂ H ₅	t-C₄H ₉ OK (cat), CH ₃ SOCH ₃ , 40-50°, 10 min	H ₂ O	$ \begin{array}{l} n-C_3H_{11}CH=CHSC_2H_3 \\ cis and trans  (-) \\ CH_3CH=CHSC_2H_3 \\ cis and trans  (90-93) \end{array} $	352
		KNH ₂ , NH ₃ (liq)	n-C ₄ H ₉ Br	CH2=CHCH(C4H9-n)SC2H3	352
	CH ₃ SCH=CHCH ₂ OCH ₃ cis: 3, trans: 7	r-C4H9OK, CH3SOCH3	.=).	$\begin{array}{l} & + \\ + \\ cis and trans & (-) \\ CH_3SCH_2CH=CHOCH_3 \\ cis & (32), trans & (65) \\ & + \\ \end{array}$	428
	сн,sсн=снсн,sсн,	sec-C ₄ H ₉ Li, ether, -78°, then -26°, 30 min, CuI (1.2 eq), -78°, 15 min	(0.5 eq)	$CH_{3}SCH=CHCH_{3}OCH_{3}$ $cis (1), trans (2)$ $CH_{3}SCH=CHCHRSCH_{3}$ $A, R = \bigcirc CH=CH_{2} (92)$	282

No of (	C					
Ato	oms	Reactant	Base and Conditions	S Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
Cs (Con	td.)	CH ₃ SCH=CHCH ₂ SCH ₃	sec-C₄H₀Li, ether, -78°, then -26°, 30 min, Cul (1.2 eq), -78°, 15 min	CH ₂ Br (0.5 eq)	$A, R = \bigcup_{\substack{\text{ch} \\ \text{not isolated}}} CH_2  (-)$	282
				(CH ₃ ) ₂ C=CHCH ₂ Br (0.5 eq)	A, R = CH ₂ CH=C(CH ₃ ) ₂ (-) not isolated	-283
				Br (0.5 eq)	A, R = (-) not isolated	282
ۍ 278		HC=CCH2S	n-C₄H₂Li (2 eq), THF, −60°	CH ₃ I HC≡CCH ₃ Br CH ₂ =CHCH ₂ Br	HC=CCHRS A, R = CH ₂ (60) A, R = CH ₂ C=CH (50) A, R = CH ₂ CH=CH ₂ (35)	311, 430 311, 430 430
		HC=CCH ₂	n-C₄H₂Li (2 eq), THF, −60°	C ₆ H ₃ CH ₂ Br C ₆ H ₃ C≡CH ₂ Br C ₆ H ₃ CH=CHCH ₂ Br C ₆ H ₃ CHO	A. $R = CH_2 C_B C_6 H_3$ (60) A. $R = CH_2 C \equiv CC_6 H_3$ (60) A. $R = CH_2 C \equiv CC_6 H_3$ (50) $C_6 H_3 C H C H C \equiv C H_3$ (25) (25)	311, 430 311, 430 311 247, 430
		HC=CCH, N	n-C₄H9Li (2 eq), THF, -60°		$C_{6}H_{5}CH=CHC\equiv CH$ $cis: 1, trans: +$	
		CH ₃ CH=CHC≡CSCH ₃	NaNH2 (1.4 eq), NH3 (liq),	H ₂ O	$C_6H_5CH=CHC\equiv CCH(OH)C_6H_5$ (20) $CH_2=CHCH=C=CHSCH_3$ (45)	590
		cis: 70, trans: 30	2 min C ₂ H ₃ ONa (0.5 eq), NH ₃ (liq)	H₂O	No reaction	590
		CH₂=CHC≡CCH₂SCH₃	30  min NaNH ₂ (1.4 eq), NH ₃ (liq), 3 min	H ₂ O	CH ₂ =CHCH=C=CHSCH ₃ (100)	590
			C2H3ONa (0.5 eq). NH3 (liq), 1 min	H ₂ O	$CH_3CH=CHC\equiv CSCH_3$ cis: 60, trans: 40 (100)	590
	0000	$CH_2 = C = C = CHSC_2H_3$ $CH_2 = CHSCH_2C \equiv CCH_3$ $CH_3CH = CHSCH_2C \equiv CH$ $CH_2 = C(CH_3)SCH_2C \equiv CH$	C ₂ H ₃ ONa, NH ₃ (liq), NaNH ₂ (1 eq), NH ₃ (liq) NaNH ₂ (1 eq), NH ₃ (liq) NaNH ₂ (1 eq), NH ₃ (liq)	H ₂ O <i>n</i> -C ₄ H ₉ Br <i>n</i> -C ₄ H ₉ Br <i>n</i> -C ₄ H ₉ Br	$CH_2=CHC\equiv CSC_2H_3  (84)$ $CH_2=CHSC(C_4H_9\cdot n)=C=CHCH_3  (-)$ $CH_3CH=CHSC(C_4H_9\cdot n)=C=CH_2  (-)$ $CH_2=C(CH_3)SC(C_4H_9\cdot n)=C=CH_2  (-)$	170 351 351 351
	C	CH ₂ =CHCH ₂ S(CH ₂ ) ₂ CH ₂ Br	LDA, THF, -70°	-	(85)	227
	Ċ	CH2=CHCH2S	$n-C_4H_9Li$ , THF, $-60^{\circ}$	СН³і	$CH_{2}=CHCHRS$	311, 429
				CH ₂ =CHCH ₂ Br C ₆ H ₅ CH ₂ Br	A, $R = CH_2CH = CH_2$ (60) A, $R = CH_2C_6H_5$ (78)	311, 429 311, 429
			$n-C_4H_9Li$ (2 eq), THF, $-60^{\circ}$	C ₂ H ₅ Br (2 eq)	CH2=CHCR2S	
				$n-C_3H_7Br$ (2 eq)	A, R = $C_2H_5$ (40) A, R = $C_3H_7-n$ (35)	311 311
279			n-C ₄ H ₉ Li, THF-[(CH ₃ ) ₂ N] ₃ PO, 10:1, -60°	$\mathcal{O}^{\mu}$	CH(CH=CH ₂ )S (52)	46
			n-C₄H₀Li, THF, [(CH₃)₂N]₃PO, 5%, -65°	<i>n</i> -C ₆ H ₁₃ I, -65°	A, $\sqrt{s}$ SCH(C ₆ H ₁₃ -n)CH=CH ₂ +	8
					B, $(S_{S})^{N}$ SCH=CHC, H ₁₅ -n A: 99, B: 1 (95)	
				C ₆ H ₃ CH ₂ CH ₂ Br	SCHRCH=CH,	
		[CH ₂ =CHCH ₂ ] ₂ S	r-C ₄ H ₉ ONa (0.51 eq), room temperature, 22 hr	n-C ₁₀ H ₂₁ Br	A, $\mathbf{K} = (CH_2)_{2}C_{6}H_{5}$ () A, $\mathbf{R} = C_{10}H_{21}$ , $\pi$ (70) (CH ₅ CH=CH) ₅ S (58) <i>cis</i> : 60, <i>trans</i> : 40	46 46 540
			$n-C_4H_9Li$ , DABCO, THF, - 15°, 1 hr		$CH_2 = CHCHSRCH_2CH = CH_2$ A, R = CH ₃ (98)	216
			n-C4H9Li, TMEDA, THF, -78°, 1 hr	C ₆ H ₃ CH ₂ Br	A, $R = CH_2CH = CH_2$ (98) A, $R = CH_2C_6H_5$ (94)	216 216

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₆	[CH2=CHCH2]2S	C2H3ONa, C2H3OH, reflux,	-	(CH ₃ CH=CH) ₂ S (-)	217
(Contd.)		12 hr		CH ₂ =CHCH ₂ SCH=CHCH ₃ (-)	
	$CH_3CH=C=CHSC_2H_5$ $C_2H_5C\equiv CSC_2H_5$	NaNH ₂ , NH ₃ (liq) NaNH ₂ , NH ₃ (liq), 5 min NaNH ₂ (1 eq), NH ₃ (liq), 10 min	C2H3Br H2O n-C3H7Br	$CH_{2}=CHCH_{2}CH(SH)CH=CH_{2} (-)$ $CH_{3}CH=C=C(C_{2}H_{3})SC_{2}H_{3} (70-75)$ $CH_{3}CH=C=CHSC_{2}H_{3} (65-70)$ $CH_{3}CH=C=C(C_{3}H_{7},n)SC_{2}H_{3} (80)$	133 133 181
			i-C3H7Br n-C4H9Br n-C3H11Br n-C6H13Br	$CH_{3}CH=C=C(C_{3}H_{7}-i)SC_{2}H_{5} (80)$ $CH_{3}CH=C=C(C_{4}H_{9}-n)SC_{2}H_{5} (80)$ $CH_{3}CH=C=C(C_{4}H_{11}-n)SC_{2}H_{5} (80)$ $CH_{3}CH=C=C(C_{6}H_{12}-n)SC_{2}H_{5} (80)$ D	181 181 181 181
	S	sec-C4H9Li (1 eq), THF, TMEDA (1 eq), -5°	D ₂ O	(-) + (-) + (-) (traces)	130
			SH G	S OH (-)	130, 382
			S	⟨ <b>−</b> )	130
				S (8)	
		n-C₄H₂Li, THF, TMEDA, 50° 2 br	CICH ₂ C(CH ₃ )=CHCH ₂ OLi, (E) $-20^{\circ}$ CH ₃ CHCH ₂	$A, R = CH_2C(CH_3) = CHCH_2OH (-)$ A, R = CH_2CH(OH)CH ₃ (75)	130 481
		-50,211	o C ₂ H ₂ CHCH ₂	$A_{s} \mathbf{R} = CH_{2}CH(OH)C_{2}H_{5}  (-)$	481
			$\bigcirc$	$\mathbf{A}, \mathbf{R} = \left( \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	142, 481
	2	<i>n</i> -C ₄ H ₉ Li, THF, TMEDA, -50°, 2 hr	С₅н₅снсн₂	$A, \mathbf{R} = CH_2CH(OH)C_6H_5  (-)$	481
		n-C ₄ H ₉ Li, DABCO, THF, -20°	∠∽ s	$A, R = \bigcup_{S}^{OH}$	479
	CH ₃ SCH ₂ CH=CHCO ₂ CH ₃ trans	LDA, THF, -78°, 30 min	[(CH ₃ ) ₂ N] ₃ PO, CH ₃ I	CH ₃ SCH=CHCHRCO ₂ CH ₃ cis and trans	
	CH ₃ SCH ₂ C≡CCH ₂ SCH ₃	<i>n</i> -C₄H ₉ Li (2 eq), ether, − 50°, 35 min	$[(CH_3)_2N]_3PO, CH_2=CHCH_2Br$ $[(CH_3)_2N]_3PO, HC=CCH_2Br$ $H_2O$	A, $R = CH_3$ (92) A, $R = CH_2CH=:CH_2$ (63) A, $R = CH_2C\equiv:CH$ (65) A, $CH_2=:C=:C=:CHSCH_3$ +	470 470 470
	CH2==CHCH2SC3H7-i	sec-C₄H₂Li, ether, -78°, then -26°, 30 min. Cul (1.2 eq) -78°, 15 min	CH ₂ =CHCH ₂ Br (0.5 eq)	B, $CH_2 = CHC \equiv CSCH_3$ A: 90-85, B: 10-15 (63-65) RCH ₂ CH=CHSC ₃ H ₇ - <i>i</i> A, R = CH ₂ CH=CH ₂ (88)	170, 277 282, 283
		16° 15. 16	CHCH ₂ Br	$A, \mathbf{R} = \underbrace{CH = CH_2}_{CH = CH_2} (92)$	282, 283
			(0.5 eq) (0.5 eq)	$A, \mathbf{R} = \underbrace{CH_2}_{(87)}$	282, 283

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₆ (Contd.)	CH ₂ =CHCH ₂ SC ₃ H ₇ -i	sec-C₄H₃Li, ether, -78°, then -26°, 30 min, CuI (1.2 eq), -78°, 15 min	C ₆ H ₅ CH ₂ Br (0.5 eq) (C ₆ H ₅ ) ₂ CHCl CH ₃ COCH ₃ (excess)	$C_6H_5CH_2CH_2C_6H_3$ (78) ( $C_6H_5$ )_2CHCH( $C_6H_3$ )_2 (70) A, CH_2=CHCH[C(OH)(CH_3)_2]SC_3H_7-i	282 282
		sec-C4H9Li, ether, -78°C,	с,н,сно	+ B, (CH ₃ ) ₂ C(OH)CH ₂ CH=CHSC ₃ H ₇ - <i>i</i> A: 20, B: 1 (89) A, <i>i</i> -C ₃ H ₇ SCH(R)CH=CH ₂	282, 283
		then $-30^{\circ}$ , 30 min	$(C_2H_3)_3B_1 - 78^\circ$ , then $C_6H_3CHO_1$	$^+$ B, <i>i</i> -C ₃ H ₇ SCH=CHCH ₃ R A: 28, B: 72, R = C ₆ H ₅ CH(OH) (−) A: 98, B: 2, R = C ₆ H ₅ CH(OH) (82)	284a 284a
			$n-C_4H_9-9-BBN, -78^\circ,$ then C_4H_2CHO	A: 99, B: 1, $R = C_6 H_5 CH(OH)$ (70)	284a
			$n-C_3H_7CHO,$ ( $C_2H_3$ ) ₃ B, -78° then $n-C_2H_2CHO, 0°, 1$ hr	A: 43, B: 57, R = $n-C_3H_7CH(OH)$ (-) A: 94, B: 6, R = $n-C_3H_7CH(OH)$ (76)	284a 284a
			(CH ₃ ) ₂ CHCHO (C ₂ H ₃ ) ₃ B, -78°, then (CH ₃ ) ₂ CHCHO, 0°, 1 hr	A: 44, B: 56, $R = (CH_3)_2CHCH(OH)$ (-) A: 94, B: 6, $R = (CH_3)_2CHCH(OH)$ (75)	284a 284a
			0°.	A: 42, B: 58, R = $OH$ (-)	284a
			then $O$ ,	A: 72, B: 28, $R = \bigcirc OH$ (80)	284a
			0°, 1 hr CH ₃ (CH ₂ ) ₅ COCH ₃	A: 32, B: 68, $R = CH_3(CH_2)_5C(OH)CH_3$ (-)	284a
			$(C_2 n_3)_3 a_1 - 7^\circ$ , then $CH_3(CH_2)_5COCH_3$ , 0°, 1 hr $n-C_4 H_9 - 9$ -BBN, $-78^\circ$ , 10 min, then $CH_2 = CHCH_2 Br$ , room temperature overnight	A: $47, B: 53, R = CH_3CH=2H_2$ (58) A: 89, B: 1, R = CH_2CH=CH_2 (58)	284a 284b
			CH ₃ CH=CHCH ₂ Br (CH ₃ ) ₂ C=CHCH ₂ Cl	A: 100, B: 0, R = CH ₂ CH=CHCH ₃ (77) A, i-C ₃ H ₃ SCHCH=CH ₂ $\downarrow$ C(CH ₃ ) ₂ CH=CH ₂ B, i-C ₃ H ₃ SC ⁺ CH=CH ₂ $\downarrow$ CHCH=CH ₂	284b
				A:93, B:7 (68)	284b
	CH ₃ SCH ₂ CH(OCH ₃ )CH ₂ SCH ₃	LDA (2 eq), THF, -75°, then 0°, 8 hr	$\bigcirc$	CH(SCH ₃ )CH=CHSCH ₃ cis and trans (99)	314
			OCH3 0 -78°, 4 hr	A.	329
		LDA (2 eq), THF, -75°,	<i>n</i> -C ₅ H ₁₁ Br, -75°, 2 hr	A: $3$ , B: $4 (-)$ CH ₃ SCHRCH=CHSCH ₃ A B = C, H, $-\pi$ (90)	314
		then - 15°, 21-70 hr; or 0°, 8 hr; or 25°, 100 min	CH ₃ CHCH ₂ , –75°, 12 hr	cis: 20, trans: 80 A, R = CH ₂ CH(OH)CH ₃ (97) cis and trans	314
			Ö C ₂ H ₅ CHO, –75°, 5 min,	A, $R = CH(OH)C_2H_5$ (85-89)	169, 314
			then 20°, 30 min CH ₃ COCH ₃ , -75°, 5 min,	cis and trans $A, R = C(OH)(CH_3)_2$ (97)	314
			then 18°, 5 min C ₆ H ₅ COC ₆ H ₅ , -75°, 5 min, then 18°, 5 min	cis and trans $A, R = C(OH)(C_6H_5)_2$ (95) cis: 4, trans: 5	314

	No.					
	Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₆ (Contd.)	CH ₃ SCH ₂ CH(OCH ₃ )CH ₂ SCH ₃	LDA (2 eq), THF,75°, then -15°, 21-70 hr, or 0°, 8 hr; or 25°, 100 min	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, _	$A, R = \underbrace{OH}_{cis \text{ and } trans} OCCH$ (96)	314
			LDA, THF	then (CH ₃ CO) ₂ O	$\mathbf{A}, \mathbf{R} = \underbrace{\bigcirc}_{\mathbf{C}} \underbrace{\odot}_{\mathbf{C}} \underbrace{\odot}_{\mathbf{C}} \underbrace{\odot}_{\mathbf{C}} \underbrace{\odot}_{\mathbf{C}} \underbrace{\odot}_{\mathbf{C}} \underbrace{\Box} \underbrace{\odot}_{\mathbf{C}} \underbrace{\odot} \underbrace{\odot}_{\mathbf{C}} \underbrace{\odot}_{\mathbf{C}} \underbrace{\odot}_$	360
28				then (CH ₃ CO) ₂ O	$A, R = \bigcirc \bigcirc$	360
4	C ₇	CH₃C≡CCH₂S S	n-C₄H9Li (2 eq), THF, −60°, 20 min	CH ₃ I HC $\equiv$ CCH ₂ Br CH ₃ C $\equiv$ CCH ₂ Br C ₆ H ₅ CE ₂ Br C ₆ H ₅ C $\equiv$ CCH ₂ Br	CH ₃ C=CCHRS A. R = CH ₃ (55) A. R = CH ₂ C=CH (45) A. R = CH ₂ C=CCH ₃ (42) A. R = CH ₂ C=CCH ₃ (48) A. R = CH ₂ C=CC ₆ H ₅ (48)	430 430 430 311, 430 311, 430
		N N CH ₃ SCH ₂ CH=CH ₂	<i>n</i> -C ₄ H ₉ Li, THF, -30°	<i>n</i> -C ₆ H ₁₃ I, -65°	$A_{1} \left\langle \underbrace{N}_{CH_{3}}^{N} \operatorname{SCH}(C_{0}H_{1}, \cdot n) CH = CH_{2} \right\rangle + +$	
			n-C₄H9Li, THF, [(CH3)2N]3PO, 5%, −65°	<i>n</i> -C ₆ H ₁₃ I, −65°	B, $\bigvee_{\substack{\text{CH}_{3}\\\text{CH}_{3}}}^{N}$ SCH=CHC ₇ H ₁₃ - <i>n</i> A: 99, B: 1 (92) A: >99, B: <1 (92) CH SC H :	8 8
			<i>t</i> -C ₄ H ₉ Li, <i>n</i> -C ₅ H ₁₂ , -10°, 4 hr	H ₂ O	(80)	132
		CH ₃ CH=CHC≡CCH ₂ SCH ₃ cis: 60, trans: 40	NaNH ₂ (1.4 eq), NH ₃ (liq), 3 min	H₂O	A, CH ₃ CH=CHC≡CCH ₂ SCH ₃ B, CH ₂ CH=CHCH=C=CHSCH.	
		C2H3ONa (0.5 eq), NH3 (liq 45 min	H ₂ O	A: 50, B: 50 (85) A <i>cis</i> : 40, B: 60 (-)	590 590	
		cis: 1, trans: 99 cis: 99, trans: 1 CH ₃ CH=CHCH=C=CHSCH ₃	C2H3ONa (0.5 eq), NH3 (liq), 45 min	H ₂ O	A trans: 10, B: 90 (-) A cis: 75, B: 25 (-) A, CH ₃ CH=CHC=CCH ₂ SCH ₃ cis	590 590
		C ₂ H ₃ CH=CHC≡CSCH ₃ cis: 45, trans: 55	C2H3ONa (0.5 eq), NH3 (liq), 60 min	H ₂ O	B, CH ₃ CH=CHCH=C=CHSCH ₃ A: 30, B: 70 ( $-$ ) A, CH ₃ CH=CHC=CCH ₂ SCH ₃ + CH ₂ CH=CHC=C=CHSCH ₄	590
2		cis: 100 trans: 100 cis: 60, trans: 40	C2H3ONa (1.4 eq), NH3 (liq), 5 min	H ₂ O	$\begin{array}{c} + \\ C, C_2H_3CH=CHCE \equiv CSCH_3 \\ A \ cis: 25, B: 15, C: 15 \ (cis: 45, trans: 55) \ (-) \\ C \ cis: 100 \ (-) \\ A \ cis: 21, B: 9, C \ trans: 70 \ (-) \\ A, CH_3CH=CHCH=C=CHSCH_3 \\ + \end{array}$	590 590 590
85		cis: 99, trans: 1 cis: 1, trans: 99 C ₂ H ₃ CH=C=C=CHSCH ₃	C2H3ONa (0.5 eq), NH3 (liq),	H ₂ O	B, $C_2H_3CH=CHC\equiv CSCH_3$ A: 95, B: 5 (20) A: 37, B: 63 (28) A: 55, B: 45 (30) $C_2H_3CH=CHC\equiv CSCH_3$	590 590 590 590
		cis and trans (CH ₃ ) ₂ C=CHC≡CSCH ₃	5 min NaNH ₂ (1.4 eq), NH ₃ (liq), 5 min	H ₂ O	cis and trans $(-)$ CH ₂ =C(CH ₃ )CH=C=CHSCH ₃ (80)	590
			C ₂ H ₅ ONa (0.5 eq), NH ₃ (liq), 30 min	H ₂ O	No reaction	590
		CH ₂ =C(CH ₃ )C≡CCH ₂ SCH ₃	C ₂ H ₅ ONa (0.5 eq), NH ₃ (liq), 15 min	H ₂ O	$(CH_3)_2C=CHC\equiv CSCH_3$ (100)	590
			NaNH ₂ (1.4 eq), NH ₃ (liq), $3 \min$	H2O	$CH_2 = C(CH_3)CH = C = CHSCH_3$ (80)	590
		CH ₂ =C(CH ₃ )CH=C=CHSCH ₃	C ₂ H ₅ ONa (0.5 eq), NH ₃ (liq), 15 min	n ₂ 0		046
		CH2=C(CH3)CH2S	n-C4H9Li, THF, -60°	n-C ₃ H ₇ Br	$CH_2 = C(CH_3)CHRS / S$	311
				C ₆ H ₃ CH ₂ Br n-C ₁₀ H ₂₁ Br	A, R = CH ₂ C ₆ H ₃ (65) A, R = C ₁₀ H ₂₁ -n (70)	311 311

No.					
Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₇ (Contd.)	CH ₂ =C(CH ₃ )CH ₂ S	n-C₄H₂Li, THF, 5% [(CH₃)₂N]₃PO, −65°	<i>n</i> -C ₆ H ₁₃ I, -65°	A, $\left\langle \begin{array}{c} N\\ S \end{array} \right\rangle$ SCH(C ₆ H ₁₃ -n)C(CH ₃ )=CH ₂ +	8
				$B, \sqrt{S} SCH = C(CH_3)C, H_{15}-n$ A: 80, B: 20 (94)	
		NaNH2, NH3 (liq)	C ₂ H ₅ Br	$CH_{2} = C(CH_{3})CH(R) / S / S / S / S / S / S / S / S / S / $	483
	N (		Cox(CH ³ ) ² I		483
	сн ₂ =снсн(сн ₃ )s	n-C ₄ H ₉ Li, THF-[(CH ₃ ) ₂ N] ₃ PO, 20:1, -60°	C₂H₃I	$CH_2 = CHC(CH_3)RS$	311
	CH ₃ SC(CH ₃ )=C=CHOC ₂ H ₅	LDA, THF, -60°, 1 hr, then [(CH ₃ ) ₂ N] ₃ PO (1 eq),	C ₆ H ₃ CH ₂ Br <i>n</i> -C ₁₀ H ₂₁ Br C ₆ H ₅ COC ₆ H ₅	$\begin{array}{l} A, R = C_{10}C_{15}(40) \\ A, R = C_{10}C_{6}H_{3},  (40) \\ CH_{3}SC(CH_{3}) = C = C(OC_{2}H_{5})C(OH)(C_{6}H_{5})_{2}  (-) \end{array}$	311 311 136
	CH ₂ =C(OC ₂ H ₅ )CH ₂ SCH=CH ₂	sec-C ₄ H ₉ Li, THF, -78°	CH2==CHCH2Br	$CH_2 = C(OC_2H_3)CHRSCH = CH_2$	
			C ₂ H ₃ CH=CHCH ₂ Br cis	$A, R = CH_2CH=CHC_2H_3  (-)$	131
	CH ₃ SCH=CHCH(CH ₃ )CO ₂ CH ₃	LDA, THF, -78°, 30 min	n-C3H11Br [(CH3)2N]3PO, CH3I	A, $R = C_3H_{11}$ - $\pi$ (-) CH ₃ SCH=CHC(CH ₃ )RCO ₂ CH ₃	131
	r-C ₃ H ₂ C≡CSC ₂ H ₅ HC≡CCH.SC ₄ H ₂ -t	NaNH2, NH3 (liq), 5 min KOH (pellets, 2 eq), THF,	$[(CH_3)_2N]_3PO, CH_2 = CHCH_2Br$ $[(CH_3)_2N]_3PO, HC = CCH_2Br$ $H_2O$	A, $R = CH_3$ (95) A, $R = CH_3CH=CH_2$ (80) A, $R = CH_2C==CH_3$ (80) C, $H_3CH=C==CHSC_3H_3$ (65-70) CH_3=C==CHSC_H_4 - (67)	470 470 470 133 61 538
	CH ₂ =CHCH ₂ SC ₄ H ₉ -	$C_2H_5ONa, C_2H_5OH,$ reflux 1 hr t-C_tH_5ONa (1 eq).		$CH_3CH=CHSC_4H_{g-t}$ (66) cis and trans $CH_{cH}=CHSC_{H-t}$ (48)	217
	C ₂ H ₃ SCH ₂ CH=C(CH ₃ ) ₂	room temperature, 11 days n-C ₄ H ₉ Li, DABCO, THF, 0°,	D ₂ O	$C_2H_3SCHDCH=C(CH_3)$ (98)	44, 220
		1 hr n-C ₄ H ₉ Li, TMEDA, THF,	CH2=CHCH2Br	A, $C_2H_3SCHRCH=C(CH_3)_2$	
		-20°, 1 hr		$ \overset{+}{\text{B, C}_2H_3SCH} \overset{+}{=} CHCR(CH_3)_2 $	
	n-C ₃ H ₇ CH ₂ CH=CHSCH ₃	r-C4H9OK, CH3SOCH3, room temperature, 30 min	(CH ₃ ) ₂ C=CHCH ₂ Br -	+ C, C ₂ H ₃ SCH ₂ C(CH=C(CH ₃ ) ₂ A: 70, B: 26.5, C: 3.5, R = CH ₂ CH=CH ₂ (95) A: 80, B: 15, C: 5, R = CH ₂ CH=C(CH ₃ ) ₂ (91) A, n-C ₃ H ₂ CH ₂ CH=CHSCH ₃ cis: 29, trans: 38	220 220 522
				B, $n-C_3H_7CH = CHCH_2SCH_3$ A: 67, B: 33 ()	
C ₈	C ₆ H ₃ CH ₂ SCH ₃	KNH ₂ , NH ₃ (liq), ether, room temperature, 1.5 hr, then reflux of ether, 16 hr		o-CH ₃ C ₆ H ₄ CH ₂ SH (-)	222
	$\bigcirc$	<i>n</i> -C ₄ H ₉ Li, THF, - 30°, 2 hr	D ₂ O	C ₆ H ₃ CHDSCH ₃ (-)	180
	SCH ₂ CH=CH ₂	n-C4H9Li, THF, - 30°	<i>n</i> -C ₆ H ₁₃ I, -65°	$A_{n} \bigvee_{N} \bigvee_{SCH(C_{6}H_{13}\cdot n)CH=CH_{2}} H_{13}\cdot n = CH_{2}$	
				B, N SCH=CHC,H ₁₅ -n	
		n-C4H9Li, THF, 5% [(CH3)2N]3PO, -65°	$n - C_6 H_{13} I_1 - 65^\circ$	A: 99, B: 1 (90) A: >99, B: <1 (90)	8 8
		C ₆ H ₅ Li, THF, -25° to -15°	C ₂ H ₃ Br	SCHRCH=CH2	
			C ₆ H ₃ CH ₂ Br C ₆ H ₃ CH ₂ CH ₂ Br	A, $R = C_2H_3$ (95) A, $R = CH_2C_8H_5$ (79-82) A, $R = CH_2CH_2C_8H_5$ (82)	269 269, 300 269
	ŃSCH2CH=CH2	n-C4H9Li, THF. 5% [(CH3)2N]3PO, 65°	<i>n</i> -C ₆ H ₁₃ I, -65°	A, $N$ -SCH(C ₆ H ₁₃ -n)CH=CH ₂ +	8
				B, NSCH=CHC, H ₁₅ -n A: 88, B: 12 (78)	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₈ (Contd.)	SCH(CH ₃ )CH=CH ₂	n-C4H9Li, THF, -65°	<i>n</i> -C ₆ H ₁₃ I, -65°	A, $\begin{pmatrix} N \\ N \\ CH_3 \end{pmatrix}$ SC(CH ₃ )(C ₆ H ₁₃ -n)CH=CH ₂	8
	$ \begin{array}{c} \bigvee_{N}^{N} \\ \downarrow_{CH_{3}}^{N} \\ SCH_{2}C(CH_{3}) = CH_{2} \end{array} $	n-C4H9Li, THF, - 30°	<i>n</i> -C ₆ H ₁₃ I, -65°	B, $\sqrt[N]{N}_{CH_3}$ SC(CH_3)=CHC ₇ H ₁₃ -n A: 80, B: 20 (-) A. $\sqrt[N]{N}_{CH_3}$ SCH(C ₆ H ₁₃ -n)C(CH ₃ )=CH ₂ + B, $\sqrt[N]{N}_{CH_3}$ SCH=C(CH ₃ )C ₇ H ₁₃ -n + 0.00 P(000)	8
	C₂H₅C(CH₃)=CHC≡CSCH₃	C2H3ONa (0.3 eq), NH3 (liq), 5 min	p-CH ₃ C ₆ H ₄ CH(CH ₃ )CH ₂ CH ₂ Br H ₂ O	$\bigwedge_{\substack{N \\ CH_3}}^{A, Y_2, B, o, (au)}$ $\bigvee_{\substack{N \\ CH_3}}^{N} SCH[C(CH_3)=CH_2]CH_2CH_2CH(CH_3)C_6H_4CH_{3^*p}$ $(-)$ $A, CH_2=C(C_2H_3)CH=C=CHSCH_3$	8
	cis: 30, trans: 70 cis: 97, trans: 3 cis: 4, trans: 96 CH ₂ =C(CH ₃ )CH=C=CHSC ₂ H ₅ CH ₃ SC(C ₂ H ₅ )=C=CHOC ₂ H ₅	LiNH ₂ , NH ₃ (liq), 15 min LDA, THF, -60°, 2 hr LDA, THF, -60°, 1 hr, then [(CH ₃ ) ₂ N] ₃ PO (1 eq), 30 min	СН ₃ СНО СН ₃ СОСН ₃ С ₆ Н ₃ СОС ₆ Н ₃	B, CH ₃ CH=C(CH ₃ )CH=C=CHSCH ₃ A: 80, B: 20 (67) A: 74, B: 26 (65) A: 76, B: 24 (68) CH ₃ =C(CH ₃ )CH=C=C(SC ₂ H ₃ )CH(OH)CH ₃ (28) CH ₃ SC(C ₂ H ₅ )=C=CROC ₂ H ₅ A, R = C(OH)(CH ₃ ) ₂ (-) A, R = C(OH)(C ₆ H ₃ ) ₂ (-)	590 590 182 136 136
	C2H3SCH2C=CCH2OC2H5	C2H3ONa (1 eq), NH3 (liq), 48 hr	H ₂ O	$CH_2 = CHC \equiv CSC_2H_3  (71)$ + $C_2H_3SCH_2C \equiv CCH_2OC_2H_3  (20)$	182
	C ₂ H ₃ OCH(CH ₃ )C≡CCH ₂ SCH ₃	n-C₄H₂Li (2 eq), ether, −50°, 35 min	H ₂ O	$C_{2}H_{3}SCH=C=CHCH_{2}OC_{2}H_{3}  (-)$ A, CH ₃ CH=C=CCCHSCH ₃ $+$ B, CH ₃ CH=CHC=CSCH ₃	170, 277
	CH ₃ SC≡CCH(OC ₂ H ₃ ) ₂	<i>n</i> -C₄H9Li, THF, −78°, 2.5 hr	CH ₃ I C ₂ H ₅ Br +C ₃ H,CH ₂ Br CH ₃ CHO C ₂ H ₅ CHO C ₆ H ₅ CHO C ₆ H ₅ CHO	A: 65, B: 35 (70) CH ₃ SCR=C=C(OC ₂ H ₃ ) ₂ A, R = CH ₃ (99) A, R = C ₁ A ₃ (89) A, R = CH ₂ C ₃ H ₂ - <i>i</i> (80) A, R = CH(OH)CH ₃ (-) A, R = CH(OH)C ₂ H ₃ (-) A, R = CH(OH)C ₂ H ₁₅ - <i>n</i> (-) A, R = CH(OH)C ₆ H ₅ (-)	137 137 137 137 137 137 137
	$n$ -C ₄ H ₉ C $\equiv$ CSC ₂ H ₅ (CH ₃ ) ₂ C $=$ CHSC ₄ H ₉ - $n$	NaNH ₂ , NH ₃ (liq), 5 min NaNH ₂ (l eq), [(CH ₃ ) ₂ N] ₃ PO, room temperature, 36 hr	CH3COCH3 — n-C4H9I	A, R = C(OH)(CH ₃ ) ₂ (-) $n-C_3H_7CH=C=CHSC_2H_5$ (65-70) $(CH_3)_2C=C(C_4H_9-n)SC_4H_9-n$ (-) + $n-C_5H_{11}C(CH_3)=CHSC_4H_9-n$ (traces)	137 133 110
	C₂H₃SCH₂C≡CCH₂SC₂H₅	C ₂ H ₅ ONa (2 eq), NH ₃ (liq), 48 hr	H ₂ O	$CH_2 = C(CH_3)CH(C_4H_9 \cdot n)SC_4H_9 \cdot n \text{ (traces)}$ $CH_2 = CHC(SC_2H_3) = CHSC_2H_5  (75)$ +	182
		<i>n</i> -C ₄ H ₉ Li (2 eq), ether, -50°, 35 min	H ₂ O	$CH_2 = CHC \equiv CSC_2H_s  (15)$ $A, CH_2 = C = C = CC = CHSC_2H_s$ $+$ $B, CH_s = CHC \equiv CSC_sH_s$	170, 277
C,	C ₆ H ₅ SCH ₂ C≡CH	KOH, THF, 20°, 16 hr KOH (pellets, 2 eq), THF, 55°, 30 min C ₂ H ₅ ONa (0.1 eq), C ₂ H ₅ OH, 52°, 5 min NaOH (1 15 eq), C ₂ H ₂ OH	H2O 	A: 80-70, B: 20-30 (60) $CH_3C \equiv CSC_6H_5$ (88) $CH_5C \equiv CSC_6H_5$ (90) $CH_2 = C = CHSC_6H_5$ (46) $HC \equiv CCH_5C_6H_5$ (17)	579 61, 538 61 536
	$\square_{s}$	$H_2O, 35^\circ, 20-30 \text{ min}$ <i>n</i> -C ₄ H ₉ Li, ether, $-20^\circ$	CH ₂ Cl ₂ (1 eq), -110° to -120°, warmed to -40° within 3 hr	$CH_{2}=C=CHSC_{6}H_{5}  (-)$ $CH_{3}C\equiv CSC_{6}H_{5}  (-)$ $(7.5)$	238

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₉ (Contd.)	C ₆ H ₃ SCH ₂ CH=CH ₂	r-C₄H₄OK, CH₃SOCH₃ C₂H₄ONa, C₂H₄OH, reflux, 12 hr sec-C₄H₄Li, THF	— — СН,I	CH ₃ CH=CHSC ₆ H ₅ cis: 48, trans: 52 (100) C ₆ H ₃ SCH=CHCH ₃ cis and trans (95) C ₆ H ₅ SCH(CH ₃ )CH=CH ₂ (95)	560 585 129
		sec-C4H9Li, THF, -78° n-C4H9Li, THF,	$n - C_6 H_{13} I_1 - 65^\circ$ $n - C_6 H_{13} I_2 - 65^\circ$	A, $C_6H_3SCH(C_6H_{13}-n)CH=CH_2$ + B, $C_6H_3SCH=CHC_7H_{15}-n$ A: 75, B: 25 (93) A: 68, B: 32 (93)	8
		5% [(CH ₃ ) ₂ N] ₃ PO, -65° n-C ₄ H ₉ Li, THF, -30°, 30 min	D ₂ O	$C_6H_3SCHDCH=CH_2$ (69) + $C_6H_3SCH=CHCH_3$ (71) cls and trans 0 D: 40 D: 53	220
		n-C ₄ H ₉ Li, DABCO, THF, - 15°, 30 min	СНэІ	2 D: 8 A, C ₆ H ₃ SCH(CH ₃ )CH=CH ₂ + B, C ₆ H ₃ SCH=CHC ₂ H ₃ <i>cis</i> and <i>trans</i>	44, 220
			CH2=CHCH2Br	C, C ₆ H ₂ SCH=CHCH ₃ cis and trans A: 71, B: 22, C: 7 (92) A, CH ₂ =CHCH((SC ₆ H ₅ )CH ₂ CH=CH ₂ +	44, 220
				B, C ₆ H ₃ SCH=CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ <i>cis</i> and <i>trans</i> + C, C ₆ H ₃ SCH=CHCH ₃ <i>cis</i> and <i>trans</i> A: 62, B: 29, C: 7 (94)	
		n-C ₄ H ₉ Li-t-C ₄ H ₉ OK, 1:1 (1.1 eq) Petroleum ether, 25°, 1 hr - 78° to 25°, 0.5 hr THF, - 78°, 1 hr	CH ₃ I 0°, neat - 78°, THF - 78°, neat	A, $C_{6}H_{5}SCH=CHC_{2}H_{5}$ + B, $C_{6}H_{5}SCH(CH_{3})CH=CH_{2}$ A (55), ( <i>E</i> ): 1, ( <i>Z</i> ): 2, B (44) A (5), ( <i>E</i> ): 1, ( <i>Z</i> ): 10, B (88) A (12), ( <i>E</i> ): 1, ( <i>Z</i> ): 2, B (83)	89 89 89
	$C_6H_5SCH = CHCH_3$ (E) and (Z)	n-C4H9Li-1-C4H9OK, 1:1, petroleum ether, 25°, 3.5 hr	СНа	$C_{6}H_{5}SCH = CHCH_{3}  (33)$ $(E) \text{ and } (Z)$ $+$ $C_{6}H_{3}SCH(CH_{3})CH = CH_{2}  (1)$ $+$ $C_{6}H_{6}SCH = CHC_{2}H_{5}  (12)$ $(E) \text{ and } (Z)$	514
	SCH(CH_3)CH=CH2	n-C₄H9Li, THF, −65°	л-С ₆ Н ₁₃ I, —65°	$C_{6}H_{3}SC(CH_{3})=CHCH_{3}  (32)$ $(E) \text{ and } (Z)$ $+$ $C_{6}H_{3}SCH_{3}  (6)$ $A, \qquad N \qquad SC(CH_{3})(C_{6}H_{13}-n)CH=CH_{2}$	
	SCH ₂ C(CH ₃ )=CH ₂	n-C₄H9Li, THF, −30°	л-С ₆ Н ₁₃ I, -65°	B, N SC(CH ₃ )=CHC ₃ H ₁₃ -n A: $\geq$ 90, B: $\leq$ 10 (-) A, SCH(C ₆ H ₁₃ -n)C(CH ₃ )=CH ₃	8
		n-C₄H9Li, THF,	<i>n</i> -C ₆ H ₁₃ I, -65°	B, $N$ SCH=C(CH ₃ )C ₇ H ₁₃ -n A: 90, B: 10 (79) A: 79, B: 21 (79)	8 8
	CH ₃ CH=C(C ₂ H ₅ )C≡CCH ₂ SCH ₃	5% [(CH ₃ ) ₂ N] ₃ PO, -65° NaNH ₂ (1.4 eq), NH ₃ (liq), 5 min	H ₂ O	A, CH ₃ CH=C(C ₂ H ₃ )C=CCH ₂ SCH ₃ + B, CH ₃ CH=C(C ₂ H ₃ )CH=C=CHSCH ₃ A:90, B:10 (85) A circ 70 B:30 ( $($ )	590 500
	CH ₃ CH=C(C ₂ H ₃ )CH=C=CHSCH ₃	C ₂ H ₃ ONa (0.5 eq), NH ₃ (liq), 30 min C ₂ H ₃ ONa (0.5 eq), NH ₃ (liq), 120 min	H ₂ O	A CIS: $10$ , B: $30^{-1}$ A, CH ₃ CH=C(C ₂ H ₃ )C=CCH ₂ SCH ₃ cis B, CH ₃ CH=C(C ₂ H ₃ )CH=C=CHSCH ₃	590

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C,	(C ₂ H ₅ ) ₂ C=CHC≡CSCH ₃	C2H3ONa (0.5 eq), NH3 (liq),	H ₂ O	A, CH ₃ CH=C(C ₂ H ₅ )C=CCH ₂ SCH ₃	590
(Contd.)		420 min		cis B, CH, CH=C(C, H,)CH=C=CHSCH,	
				+ C, $(C_2H_3)_2C = CHC \equiv CSCH_3$	
		NaNH2 (1.4 cq), NH3 (liq), 5 min	H ₂ O	A: 30, B: 20, C: 50 $(-)$ CH ₃ CH=C(C ₂ H ₃ )CH=C=CHSCH ₃ (50)	590
	$HC \equiv CCH_2SCH(C_2H_3)C(CH_3) = CH_2$	n-C ₄ H ₉ Li (2 eq), THF, -78°	CH ₃ I (2 eq)	$(C_2H_3)_2C=CHC\equiv CH$ (35) CH ₃ C=CCH(SCH ₃ )CH ₂ C(CH ₃ )=CHC ₂ H ₃ (82)	483
	CH2=CHCH(SCH2CH=CH2)CH2CH=CH2	n-C ₄ H ₉ Li, DABCO, THF, - 18°, 1 hr	CH ₂ I	A. CH ₃ S	216
	C₂H₃SCH₂C≡CCH(CH₃)OC₂H₅	C₂H3ONa (1 eq), NH3 (liq),	H ₂ O	SCH ₃ B. A: 75, B: 25 (97) CH ₃ CH=CHC≡CSC ₂ H ₅ (72)	182
		48 hr		$C_2H_3SCH_2C\equiv CCH(CH_3)OC_2H_3$ (15)	
	ŀC3H7SCH2C≡CCH2OC2H3	C ₂ H ₃ ONa (1 eq), NH ₃ (liq), 48 hr	H ₂ O	$C_2H_3SCH = C = CHCH(CH_3)OC_2H_5  (-)$ $CH_2 = CHC \equiv CSC_3H_7 + i  (76)$	182
				$i-C_3H_7SCH_2C\equiv CCH_2OC_2H_5$ (15) +	
	$CH_2 = CHCH_2 SCH(C_2H_3)C(CH_3) = CH_2$ $CH_2 = CHCH(C_4H_9 \cdot n)SC_2H_3$	NaNH ₂ , NH ₃ (liq) r-C ₄ H ₉ OK, CH ₃ SOCH ₃ , 50°,	CH31 —	$C_3H_5CH=C=CHCH_2OC_2H_5$ (-) $CH_2=CHCH(SCH_3)CH_2C(CH_3)=CHC_2H_5$ (81) $CH_3CH=C(C_4H_9,n)SC_2H_5$	483 352
		50 min KNH ₂ , CH ₃ SOCH ₃ , 50°, 30 min	H ₂ O	$CH_3CH = C(C_4H_9 \cdot n)SC_2H_5$ (60-66)	352
		-C H ONa (1 eo) 60° 21 hr	_	CH_CH=CHSC_H	540
	CH2=CHCH2SC6H13-#	C ₃ H ₃ ONa (1 eq), 60, 21 nr	-	cis: 59, trans: 41 (69.2) cis and trans (61)	217
	CI	12 hr		ĊI	
C10	SCH ₂ CH=CH ₂	10% NaOH, reflux, 12 hr	77.2	SCH=CHCH ₃ (50)	585
	SCH ₂ CH=CH ₂	10% NaOH, reflux 15 hr		cis and trans SCH=CHCH ₃ (50)	585
	СО2Н			cO ₂ H cis and trans	
	$HC \equiv CCH(CH_3)SC_6H_5$	KOH (4 eq), THF, 20°, 10 min		$CH_2 = C = C(CH_3)SC_6H_5  (67)$	536
		KOH (pellets) (2 eq), THF, room temperature, 15 min		$CH_2 = C = C(CH_3)SC_6H_5  (67)$	61, 538
	C ₆ H ₃ SCH ₂ CH=CCICH ₃	n-C ₄ H ₉ Li, THF, -80° to -30°	n-C4H91	$C_6H_5SCH(C_4H_9-n)CH=CCICH_3$ (-)	244
	C ₆ H ₃ CH ₂ S S	$n-C_4H_9Li$ , THF, -30° to -20°, 30 min	СН'і	$C_{6}H_{5}CHRS \bigvee_{S}N$	479
	C ₆ H ₃ CH ₂ SCH ₂ CH=CH ₂	n-C₄H₅Li, THF n-C₄H₅Li, TMEDA, THF,	C ₆ H ₄ CH ₂ Cl C ₆ H ₃ CH ₂ Br p-CH ₃ C ₆ H ₄ CH ₂ Cl C ₆ H ₃ CHO, then H ₃ O ⁺ CH ₃ COCH ₃ , then H ₃ O ⁺ CH ₃ I	A, R = CH ₃ (00) A, R = CH ₂ C ₄ H ₃ (45) A, R = CH ₂ C ₆ H ₃ (45) A, R = CH ₂ C ₆ H ₄ CH ₃ -p (34) A, R = CH(OH)C ₆ H ₃ (80) A, R = C(OH)(CH ₃ ) ₂ (100) A, C ₆ H ₅ CH(SCH ₃ )CH ₂ CH=CH ₂	429 429, 525 429 447 447 216
	9989, 8000 800 8 89 8 90 1903	– 78°, 1 hr	52	$ \begin{array}{c} + \\ B_{1}, C_{9}H_{5}CH_{2}SCH(CH_{3})CH=CH_{2} \\ + \\ C_{1}, C_{6}H_{5}CH_{2}SCH=CHC_{2}H_{3} \\ cis and trans \end{array} $	
		<i>n</i> -C ₄ H ₉ Li, DABCO, -15°, 1 hr	CH31	A: 23, B: 76, C: 1 (98) A, C ₆ H ₅ CH(SCH ₃ )CH ₂ CH=CH ₂ + CH=CH=CH=CH ₂	216
				B, C ₆ H ₃ CH ₂ CH ₂ CH=CHSCH ₃ trans +	
				C, CH ₃ SCH=CHCH ₂ C ₆ H ₄ CH ₃ - $p$ trans A: 67, B: 6, C: 27 (97)	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
Cin	C ₆ H ₃ SCH(CH ₃ )CH=CH ₂	r-C₄H₀Li, TMEDA, THF,	СН ¹	A, C ₆ H ₄ SC(CH ₁ ) ₂ CH=CH ₂	220
(Contd.)		0°, 30 min	_	+ B, C ₆ H ₃ SC(CH ₃ )=CHC ₂ H ₅ cis and trans A: 70, B: 30 (99) CH ₂ C(CH ₂ SC, H ₂	560
	C H SCH C(CH)-CH	The H Li DABCO THE	CHI	(E): 46, (Z): 54 (-)	220
	C6n53Cn2QCn3/—Cn2	-15°, 30 min	chả	$\begin{array}{c} A_{1} C_{6} A_{3} C_{1} C_{1} A_{3} C_{1} C_{1} A_{3} \\ + B_{1} C_{6} C_{6} A_{3} SCH = C(CH_{3})C_{2} H_{3} \\ cis and trans \end{array}$	220
		sec-C4H9Li, THF, - 78°	<i>n</i> -C ₆ H ₁₃ I, −65°	$ \begin{array}{c} + \\ C, C_6H_5CH = C(CH_3)_2 \\ A: 80, B: 13, C: 7  (91) \\ A, C_6H_5CH(C_6H_{13} \cdot n)C(CH_3) = CH_2 \\ + \end{array} $	
		<i>n</i> -C₄H ₉ Li: [(CH ₃ ) ₂ N] ₃ PO,	n-C ₆ H ₁₃ I, −65°	B, C ₆ H ₃ SCH=C(CH ₃ )C ₇ H ₁₅ -n A: 75, B: 25 (84) A: 70, B: 30 (84)	8 8
		t-C ₄ H ₉ OK, CH ₃ SOCH ₃ ,	CHJ	$(CH_3)_2C=CHSC_6H_5$ (100) C.H.CH(CH_)SCH=CHCH_	560 202
	cis and trans	then 23°, 15 hr	СНЛ	cis and trans (-)	202
	trans	- 15°, 30 min	ciiji		
	CH ₃ N=C(SCH ₃ )SCH ₂ C ₆ H ₅	LDA, THF, - 78°	(CH ₃ ) ₃ SiCl	C, C_6H_3CH=CHC_2H_3 A: 98, B + C: 2 (92) CH ₃ N=C(SCH ₃ )SCH(C ₆ H ₃ )Si(CH ₃ ) ₃ (-)	24
		<i>n</i> -C₄H₂Li, THF, – 70°,	C ₆ H ₅ CH ₂ Br		
	N SCH ₂ CH=C(CH ₃ ) ₂	30 min	C ₆ H ₃ CH ₂ CH ₂ Br	SCHRCH=C(CH ₃ ) ₂ A, R = CH ₃ C ₆ H ₅ (89) A, R = CH ₂ CH ₂ C ₆ H ₅ (77)	300 300
	C ₆ H ₅ CH ₂ SGe(CH ₃ ) ₃	t-C₄H₅Li, THF, −78°, 0.8 hr	H ₂ O	A, R = (79) A, C ₆ H ₃ CH(SR)Ge(CH ₃ ) ₃ + B, C ₆ H ₃ CH ₂ SR A: 75, B: 25, R = H (-) A: 72, B: 26, R = CH ₂ (-)	300 608 608
	CH ₂ CH=C(CH ₃ ) ₂		(C ₂ H ₅ ) ₃ SiCl	A: $72, B: 28, R = SiC_2 H_3)_3$ (-) CH ₂ CH=C(CH ₃ ) ₂	608
		n-C ₄ H ₉ Li, THF, TMEDA,	СН₃СНСН₂	(-)	481
	C ₆ H ₅ CH ₂ SSi(CH ₃ ) ₅	r-C₄H₂Li, THF, −78°, 0.01 hr	о Н ₂ О СН ₃ І	`\$´`CH₂CH(OH)CH₃ C₅H₅CH(SH)Si(CH₃)₃ (−) A, C₅H₅CH[Si(CH₃)₃]SCH₃	608
				B, C ₆ H ₅ CH ₂ SCH ₃	
			(CH ₃ ) ₂ SO ₄ (C ₂ H ₃ ) ₃ SiCl	C, C ₆ H ₅ CH(SCH ₃ )Si(CH ₃ ) ₂ C ₂ H ₅ A: 86, B: 2, C: 12 (-) A: 87, B: 3, C: 11 (-) A, C ₆ H ₅ CH[Si(CH ₃ ) ₃ ]SSi(C ₂ H ₅ ) ₃	608 608 608
		1-C₄H₂Li (1 eq), THF, -78°	H ₂ O	B. C₅H₃CH[SSi(C₂H₅)₃]Si(CH₃)₂CH₂Si(C₂H₅)₃ A: 90, B: 10 (−) C₅H₅CH(SH)Si(CH₃)₃ (90)	47
			CH3I	$C_6H_3CH_2SH (0.4)$ A, C ₆ H ₃ CH(SCH ₃ )Si(CH ₃ ) ₃ +	
				B, C ₆ H ₅ CH(SCH ₃ )Si(CH ₃ ) ₂ C ₂ H ₅ +	
			(CH ₃ ) ₂ SO ₄ (C ₂ H ₅ ) ₃ SiCl	C, C ₆ H ₂ CH ₂ SCH ₃ A: 93, B: 7, C: 0.1 ( $-$ ) A: 94, B: 4, C: 2 ( $-$ ) A, C ₆ H ₅ CH[SSi(C ₂ H ₅ ) ₃ ]Si(CH ₃ ) ₃	47 47 47
	≀-C₄H ₉ SCH ₂ C≡CCH ₂ OC ₂ H ₅	C ₂ H ₅ ONa (1 eq), NH ₃ (liq), 48 hr	H ₂ O	B, C ₆ H ₃ CH[SSi(C ₂ H ₅ ) ₃ ]Si(CH ₃ ) ₂ CH ₂ Si(C ₂ H ₅ ) ₃ A: 90, B: 10 (-) CH ₂ =CHC $\equiv$ CSC ₄ H ₉ -t (72) +	182
				+ t-C ₄ H ₉ SCH=C=CHCH ₂ OC ₂ H ₅ (-)	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₁ (Contd.)	(CH ₃ ) ₂ C=CHCH ₂ SC(CH ₃ ) ₂ CH=CH ₂	<i>n</i> -C ₄ H ₉ Li, THF, - 30°, 4 hr	H ₂ O	$(CH_3)_2C=CHCH_2CHSRCH=C(CH_3)_2$ A, R = H (100)	180
	(CH ₃ ) ₂ C=CHCH ₂ SCH ₂ CH=C(CH ₃ ) ₂	<i>n</i> -C ₄ H ₉ Li, THF, - 30°, 4 hr	H ₂ O	A, $R = CH_3$ (100) (CH ₃ ) ₂ C=CHCH(SR)C(CH ₃ ) ₂ CH=CH ₂ A $P = H_1$ (100)	180
		n-C₄H₀Li, DABCO, THF,	CH3I CH3I	$A, R = CH_3 (100) A, R = CH_3 (100) A, R = CH_3 (94)$	180 216
	i-C ₃ H ₁ SCH ₂ C≡CCH ₂ SC ₃ H ₁ -i	C ₂ H ₅ ONa (2 eq), NH ₃ (liq), 48 hr	H ₂ O	$CH_2 = CHC(SC_3H_7-i) = CHSC_3H_7-i  (50)$	182
	t-C₄H ₉ SCH ₂ C≡CSi(CH ₃ ) ₃	n-C₄H9Li	(CH ₃ ) ₃ SiCl CH ₃ I C ₃ H ₅ Br i-C ₃ H ₅ CHO t-C ₄ H ₅ CHO CH ₃ CCOCH ₃	$CH_{2} = CHC \equiv CS_{3}H_{7} + i  (39)$ $t - C_{4}H_{9}SCHRC \equiv CSi(CH_{3})_{3}$ $A, R = Si(CH_{3})_{3}  (80)$ $A, R = CH_{3}  (85)$ $A, R = CH_{5}  (80)$ $A, R = CH(OH)C_{3}H_{7} + i  (78)$ $A, R = CH(OH)C_{4}H_{9} + i  (70)$ $A, R = C(OH)(CH_{3})_{2}  (93)$	497 497 497 497 497 497
			$\bigcirc^{\circ}$	$A, R = \bigcirc OH  (83)$	497
	s		C6H3COCH3	$A, R = C(OH)(CH_3)C_6H_5  (65)$	497
C ₁₁		<i>n</i> -C ₄ H ₉ Li, THF, -60°, 5 min	CH3I	(83)	405
	C ₆ H ₃ SCH ₂ CH=C(CH ₃ ) ₂	<i>n</i> -C ₄ H ₉ Li, THF, - 30°, 30 min	D2O	$C_6H_5SCHDCH=C(CH_3)_2$ (98)	44, 220
		n-C ₄ H ₉ Li, DABCO, THF, -15°, 30 min	CH3I	$C_6H_3SCH(CH_3)CH=C(CH_3)_2$ (98)	44, 220
			CH ₂ =CHCH ₂ Br	A, $C_6H_3SCH(R)CH=C(CH_3)_2$	
			(CH ₃ ) ₂ C=CHCH ₂ Br	B, $C_6H_3SCH=CHCR(CH_3)_2$ <i>trans</i> A: 87, B: 13. R = CH ₂ CH=CH ₂ (89) A: 91. B: 6, R = CH ₂ CH=C(CH ₃ ) ₂	<b>44, 220</b> <b>44, 220</b>
		n-C ₄ H ₉ Li, THF, -78°, 30 min n-C ₄ H ₉ Li, TMEDA, THF, -78°, 30 min n-C ₄ H ₉ Li, DABCO, THF -20°, 30 min n-C ₄ H ₉ Li, [(CH ₃ ) ₂ N] ₃ PO, THF, -78°, 30 min n-C ₄ H ₉ Li, THF, -78°, 30 min	СН3СОСН3	A: 25, B: 75, R = C(OH)(CH ₃ ) ₂ (100)	279
	n-C n-C n-C n-C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A: trace, B: 90, $R = C(OH)(CH_3)_2$ (100)	279
				$A: 0, B: 100, R = C(OH)(CH_3)_2$ (100)	279
			СН³І	A: 98, B: trace, $R = CH_3$ (100)	279
			CH3COCH3 CH3I	A: 40, B: 60, $R = C(OH)(CH_3)_2$ (100) A: 60, B: 40, $R = CH_3$ (80)	279 279
			CH ₂ =CHCH ₂ Br CH ₃ COCH ₃	A: 50, B: 50, R = $CH_2CH=CH_2$ (60) $C_6H_3SCH[C(OH)(CH_3)_2]CH=C(CH_3)_2$ (60)	279 279
		n-C4H9Li-r-C4H9OK,	СН₃І	$C_6H_3SCH_2CH = C(CH_3)_2  (-)$ A, $C_6H_3SCH = CHC(CH_3)_3$	
		1:1 (1.1 eq), petroleum ether, 25°, 1 hr, $-78^{\circ}$ to 25°, 0.5 hr, then 25°, 1 hr $n-C_4H_9Li$ , THF, $-78^{\circ}$ , 2 hr	0°, neat -78°, THF C ₂ H ₃ CHO C ₄ H ₃ CHO CH ₃ COCH ₃	B, C ₆ H ₃ SCH(-CH ₃ )CH=C(CH ₃ ) ₂ A (21), B (77) A (1), B (98) C ₂ H ₃ CH(OH)C(CH ₃ ) ₂ CH=CHSC ₆ H ₅ (85) C ₆ H ₃ CH(OH)C(CH ₃ ) ₂ CH=CHSC ₆ H ₅ (92) A, R(CH ₃ ) ₂ CH=CHSC ₆ H ₅	89 89 315 315
				$B, (CH_3)_2C = CHCHRSC_6H_5A: 91, B: 9, R = C(OH)(CH_3)_2$ (70)	315
			()°	$A:95, B:5, \qquad R = \underbrace{OH}_{(85)}$	315
		<i>n</i> -C ₄ H ₉ Li, THF, TMEDA, - 50°, then 20°, 2 hr	CICH ₂ (CH ₃ )C=CHCH ₂ OTHP (E) CH ₃ CHCH ₂	$C_6H_3SCHRCH=C(CH_3)_2$ A, R = $CH_2(CH_3)C=CHCH_2OTHP$ (-) A, R = $CH_2CH(OH)CH_3$ (82)	480 241
				ОН	241
				$\mathbf{A}, \mathbf{R} = (-)$	241
			C6H3CHCH2	$\mathbf{A}, \mathbf{K} = \mathbf{C} \mathbf{\Pi}_2 \mathbf{C} \mathbf{\Pi} (\mathbf{C} \mathbf{\Pi}) \mathbf{C}_6 \mathbf{\Pi}_5  (-)$	*71
		<i>n</i> -C₄H ₉ Li, DABCO, THF, −20°, 30 min	CH ₂ Br	$\mathbf{A}, \mathbf{R} = \underbrace{\mathbf{CH}_2 \mathbf{CH}_2 \mathbf{CH}_2}_{\mathbf{CH}_2 \mathbf{CH}_2 C$	524

	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
	C ₁₁ (Contd.)	C ₆ H ₃ SCH(CH ₃ )C(CH ₃ )=CH ₂	n-C₄H₀Li n-C₄H₀Li, TMEDA, THF, 0°	n-C4H91 n-C4H91 CH3COCH3	$C_6H_3SC(CH_3)(C_4H_9-n)C(CH_3)=CH_2$ (-) $C_6H_3SC(CH_3)(C_4H_9-n)C(CH_3)=CH_2$ (49) $A, C_6H_3SCH(CH_3)C(CH_3)=CH_2$	294 626 626
		C₀H₃SCH₂C(CH₃)=CHCH₃	n-C₄H₅Li, TMEDA, THF, 0°	сн3сосн3	$B, C_{6}H_{3}SC(CH_{3})[(CH_{3})_{2}C(OH)]C(CH_{3})=CH_{2}$ + C, C_{6}H_{3}SC(CH_{3})=C(CH_{3})CH_{2}C(OH)(CH_{3}) A (12), B (51), C (18) C_{6}H_{3}SCH=C(CH_{3})CH(CH_{3})C(OH)(CH_{3})_{2} (72)	626
	C12	C ₆ H ₃ CH ₂ SC ₄ H ₉ -7	$n-C_4H_9Li$ , THF, -30°, 2 nr $n-C_4H_9Li$ , THF, -78°,	$C_6H_5CHO, -78^\circ, 3$ hr, then $H_2O$	(71)	447
298		SCH ₂ C ₆ H ₃ C=CCH ₂ S	10 min n-C₄H9Li (2 cq), THF, −60°.	СНЈ	$\sum_{c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c_{h},c$	
		5	20 min	$\begin{array}{l} HC \equiv CCH_{3}Br\\ C_{6}H_{3}CH_{2}Br\\ C_{6}H_{5}C \equiv CCH_{2}Br \end{array}$	S A, R = CH ₃ (45) A, R = CH ₂ C $\equiv$ CH (45) A, R = CH ₂ C ₆ H ₅ (50) A, R = CH ₂ C $\equiv$ CC ₆ H ₅ (50)	430 430 430 430
			n-C4H9Li (1 eq), THF, -60°	C ₆ H ₅ CHO	$C_6H_5CHCHC \equiv CC_6H_5$ (20)	247
			n-C₄H9Li, THF, −60°	HC≡CCH₂Br C ₆ H₃CH₂Br C ₆ H₃CHO	cis and trans + $C_6H_5CH=CHC\equiv CC_6H_5$ (20) cis and trans $C_6H_5C\equiv CCHRS$ A, R = CH ₂ C $\equiv$ CH (45) A, R = CH ₂ C $\equiv$ CH (45) A, R = CH ₂ C $\equiv$ CH (50) $C_6H_5CHCHC\equiv CC_6H_5$ (-)	311 311 311
		C ₆ H ₃ CH=CHCH ₂ S	<i>n</i> -C₄H₂Li, THF, −60°, 30 min	CH ₃ I <i>i</i> -C ₃ H,Br C, H, CH, Br	$C_{6}H_{3}CH = CHCHRS \bigvee_{S} N$ $A, R = CH_{3}  (47)$ $A, R = C_{3}H_{-1}  (10)$ $A, R = CH_{-C}H_{-1}  (45)$	429 429 311 429
		C ₆ H ₃	n-C₄H₀Li, DABCO, THF, −15°, 1 hr	C ₆ H ₅ CH=CHCH ₂ Br CH ₃ I	A, R = CH ₂ CH ₃ (H ₃ ) (42) A, R = CH ₂ CH=CHC ₆ H ₅ (30) C ₆ H ₅ CH=CHSCH ₃ A, CH ₃ H CH ₃ H CH ₃ H	311, 429
					B, CH, CH=CHSCH,	
		C ₆ H ₅ C≡CCH(CH ₃ )SC ₂ H ₅	t-C₄H₀OK, CH₃SOCH₃ t-C₄H₀OK (cat), CH₃SOCH₃		A: 50, B: 50 (97) $C_{6}H_{5}CH=C=C(CH_{3})SC_{2}H_{5}$ (-) $C_{6}H_{5}CH=C=C(CH_{3})SC_{5}H_{5}$ (70)	509 494
2		$\begin{array}{c} C_2H_5C(CH_3) = CHCH_2SC_6H_5\\ (Z) \end{array}$	<i>n</i> -C ₄ H ₉ Li, THF, DABCO, -15°, 40 min	OTHP	C ₆ H ₃ S (58)	511, 512
999			n-C₄H9Li, THF, −78°	CH ₂ Br CH ₂ OCOCH ₃ CH ₂ Br	C ₆ H ₅ S	416
				CH ₂ OCH ₂ C ₆ H,	$C_6H_5S$ (75)	591
		CH ₂ =CHC(CH ₃ ) ₂ SCH ₂ C ₆ H ₅	<i>n</i> -C ₄ H ₉ Li, THF, -30°, 5 hr	CH ₃ I H ₂ O CH I	$(CH_3)_2C=CHCH_2CH(SCH_3)C_6H_5$ (100) $(CH_3)_2C=CHCH_2CH(SH)C_6H_5$ (100) $CH_3=CHC(CH_3)C_6H_5$ (100)	180 180
		(CH3)2C=CHCH25CH2C6H3	- 30°, 9 min	H ₂ O D ₂ O	$CH_2 = CHC(CH_3)_2CH(SH)C_6H_5  (-)$ A, CH ₂ =CHC(CH ₃ ) ₂ CH(SH)C ₆ H ₅ $(-)$	180 180
					B, $(CH_3)C=CHCH_2SCH_2C_6H_3$ A: 1, B: 2, no deuterium ()	

No. of C Atoms	s Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.	
	(CH ₃ ) ₂ C=CHCH ₂ SCH ₂ C ₆ H ₅	n-C₄H₀Li, DABCO, THF,	СН3	C ₆ H ₃ CH(SCH ₃ )C(CH ₃ ) ₂ CH=CH ₂ (97)	216	
(Contd.)	C ₆ H ₃ SCH=C(CH ₃ )CH ₂ SC ₂ H ₃	- 15°, 1 hr LDA, THF, - 78°, 15-25 min	C ₆ H ₃ CHO, -78°, 15 min C ₆ H ₃ CH ₂ CHO, -78°, 45 min	$C_{6}H_{3}SCH = C(CH_{3})CH(SC_{2}H_{3})CH(OH)C_{6}H_{3}  (100)$ $C_{6}H_{3}SCH = C(CH_{3})CH(SC_{2}H_{3})CH(OH)CH_{2}C_{6}H_{3}  (89)$	584 584	
	$\langle \mathcal{L} \mathcal{L} \rangle$	n-C₄H₀Li, DABCO, THF, -20°	CICH ₂ (CH ₃ )C=CHCH ₂ OTHP (E)	$A_{R} = CH_{C}(CH_{C})CH_{C} = CH_{C}(CH_{C$	479	
			сн₃снсн₂	$A, R = CH_2CH(OH)CH_3  (84)$	479	
12/201		sec-C4H9Li (1 eq), THF,	CICH ₂ (CH ₃ )C=CHCH ₂ OLi, -20°	A, $R = CH_2(CH_3)C = CHCH_2OH$ (>90)	130	
300	$C_2H_3SCH_2C\equiv CC(CH_3)_2OCH(CH_3)OC_2H_3$	C ₂ H ₃ ONa (1 eq), NH ₃ (liq), 48 hr	H ₂ O	$(CH_3)_2C = CHC \equiv CSC_2H_5  (62)$	182	
	(CH ₃ ) ₂ C=CHCH ₂ SCH(SC ₂ H ₃ )CH=C(CH ₃ ) ₂	n-C ₄ H ₉ Li, DABCO, THF, - 15°, 45 min	н ³ о	$CH_2 = C(CH_3)CH = C = C(SC_2H_3)CH(OH)CH_3  (28)$ $C_2H_3SCH = CHC(CH_3)_2CH(SH)CH = C(CH_3)_2$ $trans  (35)$	490	
	I-C₄H ₉ SCH ₂ C≡CCH ₂ SC₄H ₉ -I	C2H3ONa (2 eq), NH3 (liq),	H ₂ O	$CH_2 = CHC(SC_4H_9 - t) = CHSC_4H_9 - t  (15)$	182	
		n-C ₄ H ₉ Li (2 eq), ether, -50°, 35 min	H ₂ O	$CH_2 = CHC \equiv CSC_4H_{9^{-t}} $ $A_1 CH_2 = C = C = CHSC_4H_{9^{-t}} $ $+ $	170	
				B, $CH_2 = CC \equiv CSC_4H_9 - t$ A: 1, B: 9 (30)		
C ₁₃	C ₆ H ₃ SCH ₂ C ₆ H ₃	n-C4H9Li, DABCO, THF,	CH31	C ₆ H ₃ SCH(CH ₃ )C ₆ H ₅ (98)	44, 220	
		0°, 30 min	CH2=CHCH2Br	A, C ₆ H ₃ SCH(C ₆ H ₃ )CH ₂ CH=CH ₂	44, 220	
		n-C4H9Li, ether, reflux, 5 hr C6H3Li, ether, reflux, 0.25 hr	со <u>;</u> с ₆ н ₅ сно	B, C ₆ H ₃ SCH ₃ C ₆ H ₅ A: 89, B: 11 (92) C ₆ H ₃ CH(CO ₂ H)SC ₆ H ₅ (75) C ₆ H ₃ SCH(C ₆ H ₃ )CH(OH)C ₆ H ₅ (56) threo: 60, erythro: 40	53 472	
	C₅H₃C≡CCH(C₂H₅)SC₂H₅ n-C₅H₁₀CH≡CHCH₂SCH₃	t-C4H9OK (cat), CH3SOCH3 t-C4H9OK, CH3SOCH3, room temperature, 30 min	2	$C_6H_3CH=C=C(C_2H_3)SC_2H_5$ (60) A, n- $C_9H_{19}CH_2CH=CHSCH_3$ cis: 27, trans: 40	494 522	
	S S	л-С4Н9Li, THF, —20°, 5 hr	CH ₃ I, -20° to room temperature,	$ \begin{array}{c} B, n - C_9 H_{19} CH = CHCH_2 SCH_3 \\ A: 67, B: 33  (-) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	582	
	CH ₃ ≀-C ₄ H ₉ SCH[Si(CH ₃ ) ₃ ]C≡CSi(CH ₃ ) ₃	n-C4H9Li	CH31	ĊH ₃ A, 1-C₄H ₉ SC(CH ₃ )[Si(CH ₃ ) ₃ ]C≡CSi(CH ₃ ) ₃ +	497	
				B, $F_4H_{95}C[51(CH_3)_3] = C = C(CH_3)S(CH_3)_3$ A: 30, B: 70 (65)		
C14	C ₆ H ₅ CH ₂ SCH ₂ C ₆ H ₅	1-C ₄ H ₉ OK, (CH ₃ ) ₂ NCHO, 80°	-	$C_6H_5CH = CHC_6H_5  (41)$ cis: 1, trans: 13	599	
		1-C₄H₀OK (3 eq), (CH₁)₂NCHO, 80°, 20 hr		$C_6H_5CH=CHC_6H_5$ (45)	598	
301		n-C ₄ H ₉ Li, TMEDA (1 eq), C ₆ H ₁₂ , 11°, 45 min	СН31	H ₂ S () A, C ₆ H ₅ CH ₂ CH(SCH ₃ )C ₆ H ₅ +		
		n-C4H9Li, TMEDA (15 eq), LiBr (14 eq) THE 11°		B, o-CH ₃ C ₆ H ₄ CH(SCH ₃ )C ₆ H ₅ A: 100, B: 0 (−) A: 100, B: 0 (−)	223 223	
		45 min n-C ₄ H ₉ Li, THF, 11°, 45 min n-C ₄ H ₉ Li, TMEDA (1 eq),		A:98, B:2 () A:93, B:7 ()	223 223	
		THF, 11°, 45 min n-C ₄ H ₉ Li, TMEDA (1 eq), THF-[(CH ₃ ) ₂ N] ₃ PO,		A: 57, B: 23 (-)	223	
		50: 1, 11°, 45 min n-C ₄ H ₉ Li, [2.2.2] (1 eq),		A: 21, B: 29 (-)	223	
		THF, 11°, 45 min n-C ₄ H ₉ Li, TMEDA (1 eq), LiBr (9 eq), THF, 11°,		A: 98, B: 2 ()	223	
		45 min (C ₂ H ₅ ) ₂ NLi, ether-[(CH ₃ ) ₂ N] ₃ PO, 1:1,	8 <b>2</b>	C ₆ H ₅ CH=CHC ₆ H ₅ (45)	550	
		- 10°, 30°, 20 hr KNH ₂ , NH ₃ (liq), ether, room temperature, 1.5 hr, then reflux, 16 hr	-	C ₆ H ₃ CH(SH)C ₆ H ₄ CH ₃ - <i>o</i> (79)	222	
	No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
-----	----------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------	----------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------
	C.,	C ₄ H ₄ CH ₃ SSCH ₂ C ₆ H ₅	t-C₄H₀OK, (CH₃)₂NCHO,		C ₆ H ₅ CH=CHC ₆ H ₅ (13-17)	598, 599
	(Contd.)	C ₆ H ₅ C≡CCH(SC ₂ H ₅ )C ₃ H ₇ - <i>i</i>	80° r-C ₄ H ₉ OK (cat), CH ₃ SOCH ₃	<u>-</u>	$ \begin{array}{c} + \\ H_{2}S & (8-10) \\ C_{6}H_{5}CH = C = C(SC_{2}H_{3})C_{3}H_{7}-i \\ SC_{6}H_{9}-i \end{array} $ (80)	494
302		CH ₂ SC ₄ H ₉ -t	n-C ₄ H ₉ Li (5 eq), TMEDA (5 eq), THF-n-C ₈ H ₁₄ , 2.4:1, -75°, 3 hr, then 5°, 2 hr		A	327a
					$B, \qquad \qquad$	
	C ₁₅	C ₆ H ₃ SCH ₂ CH=CHSC ₆ H ₃	sec-C4H9Li, THF, –20°, 45 min	CH3I i-C4H3I	D. $SC_{4}H_{9}-r$ OH A: 43, B: 29, C: 25, D: 3 (64) $C_{6}H_{3}SCH(CH_{3})CH=CHSC_{6}H_{5}$ (98) $C_{6}H_{5}SCH(i-C_{4}H_{9})CH=CHSC_{6}H_{5}$ (98)	372 372
		C ₆ H ₃ S	n-C4H9Li, TMEDA, THF, 0°, 1 hr, CdI2, 10 min	C ₆ H₅CHO	$C_{e}H_{s}$ HO SC ₆ H _s (51)	626
		O CH2SC6H5	n-C4H9Li, THF	m-i-C3H7C6H4CH2Cl	(-)	627
		осострание страние с	NaNH2, NH3 (liq)	СН31	CH ₂ OH (83)	483
303		Friting	<i>n</i> -C ₄ H ₉ Li, THF, -30°, 5 hr	СН3І	CH ₂ CH(SCH ₃ )CH=C(CH ₃ ) ₂	180
		HC≡CCH ₃ SC ₁₂ H ₂₃ - <i>n</i>	KOH (pellets, 2 eq), THF, room temperature, 3 hr	25	cis and trans (87) $CH_3C\equiv CSC_{12}H_{25}$ -n (72) SCH ₃	61, 538
	C ₁₆	F-CSS	LDA (2.5 eq), THF, 0°	CH3I	F-(65) SCH ₃	508
			LDA (2.5 eq), THF, 0°	CH3I	SCH ₃ H anti: 70, syn: 30 (94)	508

No. of C					1201020
Atoms	Reactant	Base and Conditions	s Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₆ (Contd.)	S S S S S S S S S S S S S S S S S S S	LDA (2.5 eq), THF, 0°	СН31	SCH ₃ (65)	508
	S S	LDA (2.5 eq), THF, 0°	СН31	SCH ₃ (24)	508
	C ₆ H ₃ SCH ₂ C(CH ₃ )=CHSC ₆ H ₃	sec-C ₄ H ₉ Li, THF, -20°, 45 min	СН3	$C_6H_5SCH(R)C(CH_3) = CHSC_6H_5$ A, R = CH ₃ (94)	372 372
			n-C ₄ H ₉ I	$A, \mathbf{R} = C_4 \mathbf{H}_9 \cdot \mathbf{n}  (98)$	372
	C ₆ H ₃ SCH(CH ₃ )CH=CHSC ₆ H ₃	sec-C ₄ H ₉ Li, THF, - 20°, 45 min	CH31	A, $C_6H_5SC(CH_3) = CHCH(CH_3)SC_6H_5$	372
	$C_6H_3SCH_2CH = C(CH_3)SC_6H_5$ $C_6H_5C = CCH(SC_2H_3)C_5H_{11}\cdot n$	1-C₄H₀OK (cat). CH₃SOCH₃	ŝ	B, C ₆ H ₃ SC(CH ₃ ) ₂ CH=CHSC ₆ H ₃ A: 9, B: 1 (98) C ₆ H ₅ CH=C=C(SC ₂ H ₅ )C ₅ H ₁₁ -n (65)	494
	CH ₂ SC ₆ H ₅	n-C ₄ H ₉ Li, DABCO, THF. - 18°, 30 min	CH ₂ Br	$\downarrow \qquad \downarrow \qquad$	87, 295
				(12) CH ₂ SC ₆ H ₃	
			CH ₂ Br	SC ₆ H ₅ (58)	87, 295
	$\sim$		<u>ل</u>	(11) CH ₂ SC ₆ H ₅	
(	CH ₂ SC ₆ H ₃	n-C₄H₂Li, THF, −78°, 1.5-2.5 hr	CH ₂ OCH ₂ C ₆ H ₅ . CH ₂ Cl -78°, 1.5 hr	SC ₆ H ₃ SC ₆ H ₃	296, 327
			CH,CI		297
		n-C₄H ₉ Li, TMEDA, THF, -50°, then - 20°, 2 hr	CH ₃ CHCH ₂	(-) CH(SC ₆ H ₃ )CH ₂ CH(OH)CH ₃ CH ₂ OTHP	241
			$CICH_2(CH_3)C = CHCH_2OTHP$ (E)	$\bigcup_{SC_{e}H_{s}} (-)$	480

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₆ (Contd.)	CH2SC6H3	n-C₄H9Li, DABCO, THF, −18°, 30 min	CH ₂ Br	$ \underbrace{ \left( \begin{array}{c} \\ \\ \\ \\ \end{array} \right)^{+} }_{SC_6H_5} (71) $	87, 295
C ₁₇	C ₆ H ₃	<i>n</i> -C₄H ₉ Li, DABCO, THF, – 15°, 1 hr	СН3	$C_{6}H_{5} \xrightarrow{C_{6}H_{5}} CH=CHSCH_{3} (95)$ $CH_{3} \xrightarrow{CH_{5}} CH=CHSCH_{5} (95)$	219
		78°, 1 hr	CH3I	$ \begin{array}{c} S \\ C_{e}H_{s} \end{array} (95.5) \\ C_{e}H_{s} \end{array} $	219
C ₁₈	SC ₆ H ₅	sec-C₄H9Li, THF, −20°, 45 min	СН3	$ \begin{array}{c} SC_{6}H_{3} \\ CH_{3} \\ SC_{6}H_{3} \\ SC_{6}H_{3} \end{array} $ (90)	372
			C ₆ H ₃ CH=CHCOC ₆ H ₃	$CH(C_6H_3)CH_3COC_6H_3  (95)$ SC_6H_3	372
			_		
	(CH ₃ ) ₂ C=C(CH ₂ OC ₆ H ₃ )CH ₂ SC ₆ H ₅	n-C ₄ H ₉ Li, THF, DABCO (1.1 eq), - 18°, 30 min		$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	504
		LDA (2.5 eq), THF, 0°	CH3I	SCH ₃ (99)	508
		LDA (2.5 eq), THF, 0°	CH3I	A.	508
				B.	
	CH ₂ S S	n-C₄H₀Li, THF, −60°. 30 min	CH ₂ Br	A: 2. B: 98 (59)	311, 429, 525
				4	





" Asterisks denote tritium-labeled positions.

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs
C4	CH ₂ =CHCH ₂ NCS	<i>t</i> -C ₄ H ₉ OK, THF, −60°, 15 min	C ₆ H ₅ CHO, 0°, 15 min	$S = \underbrace{\begin{array}{c} C_{6}H_{5} \\ HN \\ CH = CH_{2} \\$	22
C ₈	C ₆ H ₅ CH ₂ NCS	<i>t</i> -C ₄ H ₉ OK, THF, -60°, 15 min	C ₆ H ₅ CHO, 0°, 15 min	$S = \underbrace{\bigvee_{C_6H_5}^{H}}_{C_6H_5} C_{6H_5} C_{6H_$	22

TABLE XXXIX. THIOISONITRILES

TABLE XL. THIOKETONES

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₈	\$ ↓	CH ₃ MgBr (2.5 eq), THF, 3 hr	H ₂ O	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	506
		C H MaBr (2.5 ap) THE 3 br	H 0	$\int_{SH}^{S} (5) + \int_{SH}^{S} (15)$	
		$C_2 n_5 mg Bi (2.3 eq), 1 nr, 3 m$	H ₂ O	A, $(-)$ B (10) C (60)	506
		i-C ₃ H ₇ MgBr (2.5 eq), THF, 3 hr	H ₂ O	A (-), B (10), C (60) A (-), B (10), C (60)	506

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C9	S S	CH ₃ MgBr (2.5 eq), THF, 3 hr	H ₂ O	SCH ₃ (20)	506
				$ \begin{array}{c} \text{SCH}_3 \\ + \\ \text{SCH} $	
		C. H. MaBr (2.5 ca) THE 3 hr	H-O	$SC_{2}H_{5}$ and $SC_{2}H_{5}$ (45) $SC_{2}H_{5}$ and $SC_{2}H_{5}$ (20)	506
		C ₂ n ₅ mgbi (2.5 eq), 1nr, 5 m	H ₂ 0	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	500
				and (50)	
		<i>i</i> -C ₃ H ₇ MgBr (2.5 eq), THF, 3 hr	H ₂ O	$SC_{3}H_{7}-i$ and $SC_{3}H_{7}-i$ (10)	506
				$\overset{+}{\bigvee}_{\text{SC}_{3}H_{7}-i}^{\text{H}} \qquad $	
				$\overset{+}{\bigvee}$	
	s	CH ₃ MgBr (2.5 eq), THF, 3 hr	H ₂ O	$ \begin{array}{c} \text{SCH}_3 \\ + \\ \end{array} $ (10) + (30) (30)	506
				$SCH_3$ and $SCH_3$ (35)	
				(15)	

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C9 (Contd.)	s	$C_2H_5MgBr$ (2.5 eq), THF, 3 hr	H ₂ O	$\begin{array}{c} SC_2H_5 \\ \hline \\ $	506
		2		$+ SC_2H_5 \qquad SC_2H_5 \qquad (30)$	
		<i>i</i> -C ₃ H ₇ MgBr (2.5 eq), THF, 3 hr	H ₂ O	(15) $SC_{3}H_{7}-i$ $SC_{3}H_{7}-i$ (10) + (15)	506
				+ $SC_{3}H_{7}-i$ $SC_{3}H_{7}-i$ and (15)	
C11	C ₆ H ₅ CSC ₄ H ₉ - <i>t</i>	CH ₃ MgBr, ether, 16 hr	H ₂ O	$ \begin{array}{c} + \\ SH \\ \downarrow \\ A, C_6H_5CH(SCH_3)C_4H_9-t \\ + \end{array} $ (45)	388
		CH ₃ Li, ether, 15 min	H ₂ O	B, $C_6H_5C(CH_3)(SH)C_4H_9-t$ + C, $C_6H_5C(CH_3)(SCH_3)C_4H_9-t$ A: 57, B: 28, C: 15 (-) A, $C_6H_5CH(SCH_3)C_4H_9-t$	388
		CH ₃ MgBr, THF, 15 min n-C ₅ H ₁₁ MgBr, THF, 1 hr n-C ₆ H ₁₃ MgBr, THF, 15 hr	H ₂ O H ₂ O H ₂ O	B, $C_6H_5C(CH_3)(SH)C_4H_9-t$ A: 22, B: 78 (-) $C_6H_5C(CH_3)(SCH_3)C_4H_9-t$ (10) $C_6H_5CH(SC_5H_{11}-n)C_4H_9-t$ (-) A, $C_6H_5CH(SC_6H_{13}-n)C_4H_9-t$	388 388 388
		C ₂ H ₅ MgBr, ether, 15 min	H ₂ O	$ \begin{array}{c} + \\ B, C_6H_5CH(SH)C_4H_9-t \\ A: 40, B: 60  (-) \\ A, C_6H_5CH(SC_2H_5)C_4H_9-t \\ + \end{array} $	
		$C_2H_5MgBr$ , THF, 15 min <i>n</i> - $C_3H_7MgBr$ , ether, 15 min	H2O H2O	B, $C_6H_5CH(SH)C_4H_9-t$ + C, $C_6H_5C(C_2H_5)(SC_2H_5)C_4H_9-t$ A: 46, B: 54, C: trace (-) A: 37, B: 38, C: 25 (-) A, $C_6H_5CH(SC_3H_7-n)C_4H_9-t$ + D, C, H, CH(SU)C, H, C	388 388
				B, $C_6H_5CH(SH)C_4H_9-t$ A: 5, B: 95 (-)	388

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₁ (Contd.)	C ₆ H ₅ CSC₄H ₉ -t	n-C ₃ H ₇ MgBr, THF, 15 min n-C ₄ H ₉ MgBr, ether, 15 min	H ₂ O H ₂ O	A: 50, B: 50 (-) A, C ₆ H ₅ CH(SC ₄ H ₉ - <i>n</i> )C ₄ H ₉ - <i>t</i>	388
C ₁₃	C ₆ H ₅ CSC ₆ H ₅	<i>n</i> -C ₄ H ₉ MgBr, THF, 15 min CH ₃ MgBr (10 eq), THF, -70°	H ₂ O H ₂ O	+ B, C ₆ H ₅ CH(SH)C ₄ H ₉ - $t$ A: trace, B: 100 (-) A: 67, B: 33 A, (C ₆ H ₅ ) ₂ C(CH ₃ )SCH ₃	388 388
		20 min 2 hr CH ₃ MgI (5 eq), ether, 16 hr	H ₂ O H ₂ O H ₂ O	+ B, $(C_6H_5)_2C=CH_2$ A: 65, B: 35 (-) A: 100, B: 0 (-) $(C_6H_5)_2CC(C_6H_5)_2$ V S	389 389 389
		CH ₃ Li (5 eq), ether, 16 hr	H ₂ O	$(C_6H_5)_2C = C(C_6H_5)_2$ A, $(C_6H_5)_2CHSCH_3$ $+$ B, $(C_6H_5)_2CHSCH_3$	389
		$C_2H_5MgBr$ (5 eq), ether, 16 hr	H ₂ O	A: 30, B: 70 (-) A, $(C_6H_5)_2CH_5$	389
		C ₂ H ₅ MgBr (5 eq), THF, 20 min	H ₂ O	B, $C_6H_5CSC_6H_5$ A: 67, B: 29 () $(C_6H_5)_2CHSC_2H_5$ (90) +	389
				$(C_6H_5)_2C = CHCH_3$ (5)	
		i-C ₃ H ₇ MgBr (5 eq), THF, 20 min	H₂O	A, $(C_6H_5)_2$ CHSC ₃ H ₇ - <i>i</i> + B, $(C_6H_5)_2$ C=C(CH ₃ ),	161, 389
		<i>n</i> -C ₃ H ₇ MgBr (5 eq), THF, 20 min	H ₂ O	+ C, $C_6H_5CSC_6H_5$ A: 63, B: 25, C: 12 (-) A, $(C_6H_5)_2CHSC_3H_7-n$	389
		<i>t</i> -C₄H₂MgBr (5 eq), THF, 20 min <i>n</i> -C₄H₂MgBr (5 eq), THF, 20 min	H ₂ O H ₂ O	$ \begin{array}{c} + \\ B, (C_6H_5)_2C = CHC_2H_5 \\ A: 88, B: 9  (-) \\ (C_6H_5)_2CHSC_4H_9 - t  (48) \\ A, (C_6H_5)_2CHSC_4H_9 - n \end{array} $	389 389
		t-C₄H ₉ CH₂MgBr (5 eq), THF, 20 min	H ₂ O	+ B, $(C_6H_5)_2C = CHC_3H_7 - n$ A: 20, B: 80 (-) A, $(C_6H_5)_2CHSCH_2C_4H_9 - t$ +	389
		(C ₂ H ₅ ) ₂ CHMgBr (5 eq), THF, 20 min	H ₂ O	B, $C_6H_5CSC_6H_5$ A: 25, B: 60 (-) A, $(C_6H_5)_2CHSCH(C_2H_5)_2$ +	389
				B, $(C_6H_5)_2C = C(C_2H_5)_2$ + C, $C_6H_5CSC_6H_5$ A: 50, B: 34, C: 16 (-)	
		MgBr (5 eq), THF, 20 min	H ₂ O	$\int SCH(C_6H_5)_2 $ (21)	161, 389
		MgBr (5 eq), THF,	H ₂ O	$SCH(C_6H_5)_2$ (14)	389

TABLE XL. THIOKETONES (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₃	C6H5CSC6H5	C ₆ H ₅ MgBr (5 eq), THF, 20 min	H ₂ O	$(C_6H_5)_2CHSC_6H_5$ (25)	389
(Contd.)		C ₆ H ₅ CH ₂ MgBr (5 eq), THF, 20 min	H ₂ O	$(C_6H_5)_2$ CHSCH ₂ C ₆ H ₅ (73)	389
		$(C_2H_5)_2Cd$ (2 eq), THF, 1 hr	H ₂ O	A, C ₆ H ₅ CSC ₆ H ₅	389
				$\mathbf{B}, (\mathbf{C}_{6}\mathbf{H}_{5})_{2}\mathbf{CHSC}_{2}\mathbf{H}_{5}$	
				C, $(C_6H_5)_2C = CHCH_3$	
				D, C ₆ H ₅ CH ₂ C ₆ H ₅	
				E, $(C_6H_5)_2CC(C_6H_5)_2$ $\bigvee$ S	
		$(C_2H_5)_2Cd$ (2 eq), ether, 30 min	H ₂ O	A: 50, B: 30, C: 11, D: 3, E: 6 (-) $(C_6H_5)_2CC(C_6H_5)_2$ (90)	389
		$(n-C_{2}H_{2})$ -Cd (2 eq) THE 30 min	но	S A C H CSC H	280
		( <i>i</i> - c ₃ , <i>i</i> , <i>i</i> ) ₂ , cu (2 cq), <i>i</i> , <i>i</i>	1120	+ P (C H ) CUSC H	369
				B, $(C_6H_5)_2CHSC_3H_7-n$ +	
				C, $C_6H_5CH_2C_6H_5$ A: 43, B: 20, C: 37 (-)	
					200
		$(n-C_3H_7)_2$ Cd (2 eq), ether, 30 min	H ₂ O	A, $C_6H_5CSC_6H_5$ +	389
				B, $C_6H_5CH_2C_6H_5$ A: 37, B: 63 (-)	
		$C_6H_5MgBr$ , THF or ether or $C_6H_6$	H ₂ O	$(C_6H_5)_2CHSC_6H_5$ (37–10)	56, 161, 162
		C ₆ H ₅ (CH ₂ ) ₃ MgBr, THF	H ₂ O	$(C_6H_5)_2CHS(CH_2)_3C_6H_5$ (29)	161
		$CH_3MgBr, THF$	H ₂ O	$(C_6H_5)_2$ CHSCH ₃ (73)	161
		$C_2 H_5 MgBr, THF$		$(C_{6}H_{5})_{2}CHSC_{2}H_{5}$ (93)	161
		n-C H MgBr THF	H ₂ O	$(C_{6}H_{5})_{2}CHSC_{3}H_{7}-n$ (79)	161
		i-C-H-CH-CH-MgBr. THF	H ₂ O	$(C_{c}H_{c})_{2}$ CHSCH_{a}CH_{a}C_{a}H_{a}-i (48)	161
		$C_6H_5Li$ , ether, $C_6H_6$ ,	H ₂ O	$(C_6H_5)_2CHSC_6H_5$ (70)	162
		$C_6H_5Li$ , THF, -70° to 25°	H ₂ O	$(C_6H_5)_2CHSC_6H_5$ (30–40)	56
		NG SEVIE NU	CH ₃ OD	$(C_6H_5)_2CDSC_6H_5$ (84)	56
		n-C ₄ H ₉ Li, THF	H ₂ O	$(C_6H_5)_2CHSC_4H_9-n$ (25)	56
		$C_6H_5Na$ , $C_6H_6$	H ₂ O	$(C_6H_5)_2CHSC_6H_5$ (25)	162
		$C_6H_5Li$ , ether	CH ₃ OD	$(C_6H_5)_2CDSC_6H_5$ (0.88 D) (31)	162
			(CH ₃ ) ₃ SiCl	$(C_6H_5)_2C(SC_6H_5)Si(CH_3)_3$ (37)	162
	C ₆ D ₅ CSC ₆ D ₅	C ₆ H ₅ Li, THF	H ₂ O	$(C_6D_5)_2CHSC_6H_5$ (-)	56
~		$C_6H_5L_1$ , ether	H ₂ O	$(C_6D_5)_2CHSC_6H_5$ (24)	162
C ₁₅	$(p-CH_3UC_6H_4)_2CS$	$C_6H_5LI$ , etner, $C_6H_6$ , room temperature	H ₂ U	$\psi$ -Cn ₃ OC ₆ n ₄ ) ₂ Cn ₃ C ₆ n ₅ (70)	102

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₁₅	(p-CH ₃ OC ₆ H ₄ ) ₂ CS	C ₂ H ₅ MgBr, THF, 10 min	H ₂ O	A, p-CH ₃ OC ₆ H ₄ CSC ₆ H ₄ OCH ₃ -p	
(com				B, C ₂ H ₅ SCH[ $C_6H_4OCH_3-p$ ] ₂	
				C, CH ₃ CH=C(C ₆ H ₄ OCH ₃ - $p$ ) ₂	
				$\mathbf{D}, [p-\mathbf{CH}_{3}\mathbf{OC}_{6}\mathbf{H}_{4}]_{2}\mathbf{CH}_{2}$	
				A: 3, B: 30, C: 20, D: 15 (-)	389
		$C_2H_5MgBr$ , ether, 30 min	H ₂ O	A: 56, B: 29, C: 7, D: 0 (-)	389
3 C17	$[m,p-(CH_3)_2C_6H_3]_2CS$	$C_2H_5MgBr$ , THF, 15 min	H ₂ O	$C_{2}H_{5}SCH[C_{6}H_{3}(CH_{3})_{2}-m,p]_{2}$ (94)	389
10		<i>i</i> -C ₃ H ₇ MgBr, THF, 15 min	H ₂ O	A, $m,p$ -(CH ₃ ) ₂ C ₆ H ₃ CSC ₆ H ₃ (CH ₃ ) ₂ - $m,p$ +	389
				B, <i>i</i> -C ₃ H ₇ SCH[C ₆ H ₃ (CH ₃ ) ₂ - <i>m</i> , <i>p</i> ] ₂ +	
				C, $[m,p-(CH_3)_2C_6H_3]_2C=C(CH_3)_2$	
				$D [m p-(CH_{2}), C, H_{2}], CH_{3}$	
				A: 5, B: 78, C: 7, D: 10 (-)	
		<i>n</i> -C ₃ H ₇ MgBr, ether, 15 min	H ₂ O	A, $m,p$ -(CH ₃ ) ₂ C ₆ H ₃ CSC ₆ H ₃ (CH ₃ ) ₂ - $m,p$ +	389
				B, n-C ₃ H ₇ SCH[C ₆ H ₃ (CH ₃ ) ₂ -m,p] ₂	
				$A \cdot 56 B \cdot 18 C \cdot 21 (-)$	
	$[p-(CH_3)_2NC_6H_4]_2CS$	C ₆ H ₅ Li, THF	H ₂ O	$[p-(CH_3)_2NC_6H_4]_2CHSC_6H_5$ (60–70)	162

TABLE XL. THIOKETONES (Continued)

TABLE XLI. THIOLS

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₃	CH2=CHCH2SH	$n-C_4H_9Li$ (2 eq), TMEDA, $n-C_6H_{14}$ , 0°, 3 hr	$CH_2 = CHCH_2Br, -78^\circ, THF$	A, RCH ₂ CH=CHSR' +	
				B, $CH_2 = CHCHRSR'$	
				A: 25, B: 9, $R = R' = CH_2CH = CH_2$	89
		n-C ₄ H ₉ Li (2.1 eq), THF, TMEDA (1-2 eq), 0°, 4 hr	$C_2H_5Br$ (2.1 eq)	A: 77, B: 23, $R = R' = C_2 \tilde{H}_5$ (65)	43
			$i-C_3H_7Cl$ (1.1 eq), then $C_6H_5CH_2Br$ (1.1 eq)	A: 68, B: 32, $R = C_3 H_7 - i$ , $R' = CH_2 C_6 H_5$ (80)	43, 630
			$[(CH_3)_2N]_3PO (30\%),$ <i>i</i> -C ₃ H ₇ Cl (1 eq), then C ₆ H ₄ CH ₂ Br (1 eq)	A: 22, B: 78, $\mathbf{R}' = \mathbf{C}_{6}\mathbf{H}_{5}\mathbf{C}\mathbf{H}_{2}$ , $\mathbf{R} = i - \mathbf{C}_{3}\mathbf{H}_{7}$ (82)	
			$t-C_4H_9OK$ (1 eq), [(CH ₃ ) ₂ N] ₃ PO (12%), $i-C_3H_7Cl$ (1 eq), then C_6H_6CH_2Br (1 eq)	A: 35, B: 65, R' = $C_6H_5CH_2$ , R = <i>i</i> - $C_3H_7$ (50)	630
			$n-C_5H_{11}Cl(1.1 eq),$ then CH ₃ I(1.1 eq)	A: 76, B: 24, $R = C_5 H_{11}$ - <i>n</i> , $R' = CH_3$ (77)	43
			$n-C_6H_{13}Br$ (1.1 eq), then CH ₃ I (1.1 eq)	A: 78, B: 22, $R = C_6 H_{13}$ -n, $R' = CH_3$ (90)	43, 630
			$n-C_8H_{17}Cl$ (1.1 eq), then CH ₃ I (1.1 eq)	A: 74, B: 26, $R = C_8 H_{17}$ -n, $R' = CH_3$ (87)	43, 630
			$n-C_8H_{17}Cl$ (2 eq)	A: 73, B: 27, $R = R' = C_8 H_{17} \cdot n$ (81)	630

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₃ (Contd.)	CH ₂ =CHCH ₂ SH	n-C ₄ H ₉ Li (2.1 eq), THF, TMEDA (1-2 eq), 0°, 4 h	$t-C_4H_9OK (1 eq),$ [(CH ₃ ) ₂ N] ₃ PO (30%),	A: 88, B: 12, $R = R' = C_8 H_{17} n$ (80)	630
			$n-C_{10}H_{21}Br$ (2.1 eq)	A: 77, B: 23,	43
			C ₆ H ₅ CH ₂ Br (2.1 eq)	$\mathbf{R} = \mathbf{R}' = \mathbf{C}_{10}\mathbf{H}_{21}\textbf{-}n  (90)$ A: 73, B: 27,	43
a			$(CH_3)_2CCH_2$ (2.1 eq)	$R = R' = CH_2C_6H_5  (67)$ A: 78, B: 22, $R = R' = CH_2C(OH)(CH_3)_2  (86)$	43 5)
			$(CH_3)_2CCH_2 (1 eq),$ $\bigvee_{O}$	A: 64, B: 36 R' = $CH_3$ , R = $CH_2C(OH)(CH_3)_2$ (60)	630
			then CH ₃ I (1 eq) $[(CH_3)_2N]_3PO (30\%),$ $(CH_3)_2CCH_2 (1 eq),$ $(CH_3)_2CCH_2 (1 eq),$	A: 76, B: 24 R' = CH ₃ , $R = CH_2C(OH)(CH_3)_2$ (45)	630
			then CH ₃ I (1 eq) t-C ₄ H ₉ OK (1 eq), [(CH ₃ ) ₂ N] ₃ PO (12%), (CH ₃ ) ₂ CCH ₂ (1 eq) $\bigvee$	A: 86, B: 14 R' = CH ₃ , $R = CH_2C(OH)(CH_3)_2$ (60)	630
			then $CH_3I$ (1 eq) ( $CH_3$ ) ₃ SiCl (1.1 eq), then $C_6H_5CH_2Br$ (1.1 eq)	A: 76, B: 24, R = Si(CH ₃ ) ₃ , R' = CH ₂ C ₆ H ₅ (76-89)	43, 630
			[(CH ₃ ) ₂ N] ₃ PO (30%) added	A: 82, B: 18 R' = $C_6H_5CH_2$ ,	630
			$CH_3OH$ (1 eq), then $C_6H_5CH_2Br$	$R = (CH_3)_3S_1$ (80) A: 84, B: 16, R' = C ₆ H ₅ CH ₂ ,	630
			[(CH ₃ ) ₂ N] ₃ PO (30%) added	$R = H^{-}(90)$ A:81, B: 19, R' = C ₆ H ₅ CH ₂ ,	630
			$t-C_4H_9OK$ (1 eq), then [(CH) N] PO (12%) added	R = H (86) A: 92, B: 8, R' = C ₆ H ₅ CH ₂ ,	630
			$C_2H_5CHO (1.1 eq),$	$R = H^{-}(85)$ A: 74, B: 26, R = CH(OH)C ₂ H ₅ ,	43
			$C_6H_5CHO (1.1 eq),$ then $CH_3I (1.1 eq),$	$R' = CH_3$ (69) A: 67, B: 33, $R = CH(OH)C_6H_5$ , $R' = CH_3$ (89)	43
			(1.1 eq),	A: 72, B: 28, $\mathbf{R} = \bigcirc \mathbf{OH}$ ,	
			then CH ₃ I (1.1 eq) [(CH ₃ ) ₂ N] ₃ PO (30%),	$R' = CH_3$ (73) A: 52, B: 48, $R' = CH_3$ ,	43, 630 630
			(1 eq),	$R = \bigcup_{n \to \infty} On,  R' = CH_3  (80)$	
			then $CH_3I$ (1 eq) t-C ₄ H ₉ OK (1 eq), [(CH ₃ ) ₂ N] ₃ PO (12%),	A: 80, B: 20,	630
			(1 eq),	$\mathbf{R} = \bigcirc \stackrel{\mathbf{OH}}{\longrightarrow},  \mathbf{R}' = \mathbf{CH}_3  (35)$	
			then $CH_3I$ (1 eq) $C_6H_5COCH_3$ (1.1 eq), then $CH_3I$ (1.1 eq)	A: 70, B: 30, $R = C(OH)(CH_3)(C_6H_5),$	43
			$C_6H_5COC_6H_5$ (1.1 eq), then $CH_3I$ (1.1 eq)	$K' = CH_3$ (95) A: 75, B: 25, R = C(OH)(C ₆ H ₅ ) ₂ , R' = CH ₃ (88)	43, 630

TABLE XLI. THIOLS (Continued)

No. of C					
Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₃ (Contd.)	CH ₂ =CHCH ₂ SH	$n-C_4H_9Li$ (2.1 eq), THF, TMEDA (1-2 eq), 0°, 4 hr	$t-C_4H_9OK (1 eq),$ [(CH ₃ ) ₂ N] ₃ PO (12%), C ₆ H ₅ COC ₆ H ₅ (1 eq), then CH ₃ I (1 eq)	A: 90, B: 10, $R = C(OH)(C_6H_5)_2$ , $R' = CH_3$ (76)	630
		NCHLITHE ather	$CH_3SSCH_3$ (1.1 eq), then $CH_3I$ (1.1 eq)	A: 80, B: 20, $R = SCH_3$ , $R' = CH_3$ (70) CH = CHCHPSP'	43
		$MgBr_2$ (1 eq), ether	C ₂ H ₅ CHO, their CH ₃ I	$A, R = CH(OH)C_2H_5,$ $R' = CH_3  (91)$	267
			i-C ₃ H ₇ CHO, then CH ₃ I	A, R = CH(OH)C ₃ H ₇ - $i$ , R' = CH ₃ (98)	267
			C ₆ H ₅ CHO, then CH ₃ I	$A, R = CH(OH)C_6H_5, R' = CH_3 (73)$	267
			<b>○</b> ,	$\mathbf{A}, \mathbf{R} = \underbrace{\mathbf{OH}}_{\mathbf{N}}, \mathbf{R}' = \mathbf{CH}_3  (94)$	267
			then $CH_3I$ $C_6H_5COCH_3$ , then $CH_3I$	A, R = C(OH)(CH ₃ )C ₆ H ₅ , R' = CH ₂ (89)	267
			$CH_2 = CHCOCH_3$ , then $CH_3I$	A, R = C(OH)(CH ₃ )CH=CH ₂ , R' = CH ₂ (84)	267
			CH ₃ CH=CHCOCH ₃ , then CH ₃ I	$A, R = C(OH)(CH_3)CH=CHCH_3,$ $B' = CH_4  (95)$	267
			$(CH_3)_2C = CHCOCH_3$ , then $CH_3I$	A, R = C(OH)CH=C(CH ₃ ) ₂ , R' = CH ₃ (95)	267
C₄	CH2=C(CH3)CH2SH	<i>n</i> -C ₄ H ₉ Li (2 eq), THF, TMEDA (2 eq), -80°	$ \begin{array}{c} O \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	A, R = $(OH, R' = CH_3 (90))$ A, R = $(OH, R' = CH_3 (91))$ A, R'SCH=C(CH ₃ )CH ₂ R + B, R'SCH(R)C(CH ₃ )=CH ₂ A: 47, B: 53, R = C ₈ H ₁₇ -n, R' = CH ₃ (80) A: 69, B: 31, R = C ₈ H ₁₇ -n, R' = CH ₃ (68) A: 54, B: 46, R = C ₂ H ₅ CH(OH), R' = CH ₃ (80) A: 66, B: 34, R = $(OH)$ R' = CH ₃ (80) A: 49, B: 51, R = C ₆ H ₅ CH(OH), R' = CH ₃ (95) A: 73, B: 27, R = C ₆ H ₅ CH(OH), R' = CH ₃ (80)	267 267, 630 630 630 630 630 630

TABLE XLI. THIOLS (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₄ (Contd.)	CH ₂ =C(CH ₃ )CH ₂ SH	<i>n</i> -C₄H₂Li (2 eq), THF, TMEDA (2 eq), −80°	$C_6H_5COC_6H_5$ (1 eq), then $CH_3I$ (1 eq) <i>t</i> - $C_4H_9OK$ (1 eq), 30% [( $CH_3$ ) ₂ N] ₃ PO, $C_6H_5COC_6H_5$ (1 eq), then $CH_4I$ (1 eq)	A: 61, B: 39, $R = (C_6H_5)_2C(OH)$ , $R' = CH_3$ (90) A: 82, B: 18, $R = (C_6H_5)_2C(OH)$ , $R' = CH_3$ (75)	630 630
C7	C ₆ H₅CH₂SH	<i>t</i> -C ₄ H ₉ OK, (CH ₃ ) ₂ NCHO, 80° <i>n</i> -C ₄ H ₉ Li, THF- <i>n</i> -C ₅ H ₁₂ , 1:1, 50°, 4 hr or <i>n</i> -C ₄ H ₉ Li, TMEDA, THF- <i>n</i> -C ₅ H ₁₂ , 1:1, $-5^{\circ}$ , 2.5 hr	then CH ₃ I (1 eq) - CH ₃ I (2 eq), $-78^{\circ}$ CH ₂ C(CH ₃ ) ₂ (2 eq), $-78^{\circ}$ $\checkmark /$ O BrCH ₂ CH ₂ CH ₂ CH ₂ Br (1 eq), $-78^{\circ}$ CH ₂ C(CH ₃ ) ₂ $\checkmark /$ O then CH ₂ =CHCH ₂ Br (1 eq) <i>n</i> -C ₄ H ₉ I (1 eq), then CH ₃ I (1 eq) CH ₂ =CHCH ₂ Br (1 eq), then CH ₃ I <i>n</i> -C ₇ H ₁₅ I (2 eq)	$C_{6}H_{5}CH=CHC_{6}H_{5}  (0.5)$ $C_{6}H_{5}CHRSR'$ A, R = R' = CH ₃ (72) A, R = R' = CH ₂ C(OH)C(CH ₃ ) ₂ (70) A, R = R' = (CH ₂ ) ₃ (67) A, R = (CH ₃ ) ₂ C(OH)CH ₂ $R' = CH_{2}=CHCH_{2}  (63)$ A, R = C ₄ H ₉ -n, R' = CH ₃ (75) A, R = CH ₂ =CHCH ₂ , R' = CH ₃ (55) A, R = R'=C ₇ H ₁₅ -n (60) (0.5)	599 118, 630 118, 630 630 630 630 630
			O (1 eq), then CH ₃ I, $-78^{\circ}$ O (2 eq), $-78^{\circ}$	A, R = $(76)$ A, R = R' = $(76)$	118
			CH ₂ CHCH ₂ Cl (1 eq), $-78^{\circ}$ n-C ₄ H ₉ CHO (1 eq), then CH ₃ I (1 eq), $-78^{\circ}$	HO $S$ $C_6H_5$ $C_6H_5CHRSR'$ $A, R = CH(OH)C_4H_9-n,$ $R' = CH_3$ (90)	118, 630 118, 630
			$C_6H_5CHO (1 eq), - 78^\circ$ $C_6H_5CHO (1 eq), then CH_3I (1 eq), -78^\circ$	A, R = CH(OH)C ₆ H ₅ , R' = H (70) A, R = CH(OH)C ₆ H ₅ , R' = CH ₃ (82)	118, 630 118, 630
			(1  eq), then CH ₃ I (1 eq)	$A, R = \bigwedge_{i=1}^{OH}, R' = CH_3  (72)$	630
			(1 eq), then hydrolysis	$A, R = \bigcirc OH, R' = H (65)$	630
			(1  eq), then CH ₃ I (1 eq)	$A, R = \bigcirc OH, R' = CH_3  (85)$	630

TABLE XLI. THIOLS (Continued)

TABLE XLI. THIOLS (Continued)

No. of C Atoms	Reactant	Base and Conditions	Quenching Reagent	Product(s) and Yield(s) (%)	Refs.
C ₇ (Contd.)	C ₆ H ₅ CH ₂ SH	$n-C_4H_9Li$ , THF- $n-C_5H_{12}$ , 1:1, 50°, 4 hr or $n-C_4H_9Li$ , TMEDA, THF- $n-C_5H_{12}$ , 1:1, -5°, 2.5 hr	2, $(1 \text{ eq}),$ then CH ₃ I (1 eq), $-78^{\circ}$	$OH \\ CH(C_6H_5)SCH_3  (61) \\ + \\ O \\ \parallel$	118, 630
				CH(C ₆ H ₅ )SCH ₃ (14)	
		O (1 eq),	$CH(C_6H_5)SCH_3 (34)$	118, 630	
			then $CH_3I$ (1 eq), $-78^\circ$ $C_6H_5COC_6H_5$ (1 eq), then $CH_3I$ (1 eq)	$C_6H_5CH_2SCH_3$ (45) $C_6H_5CHRSR'$ A, R = C(OH)(C ₆ H ₅ ) ₂ , R' = CH ₂ (48)	118
		$(CH_3)_3SiCl (1 eq), -78^{\circ}$ $(CH_3)_3SiCl (2 eq), -78^{\circ}$ $(CH_3)_3SiCl (1 eq),$ then $CH_3l (1 eq), -78^{\circ}$	A, R = Si(CH ₃ ) ₃ , R' = H (73) A, R = R' = Si(CH ₃ ) ₃ (93) A, R = Si(CH ₃ ) ₃ , (93) A, R = CH ₂ (62-91)	118, 630 118, 630 118, 630	
			$CH_3SSCH_3$ (1 eq), then $C_6H_5CH_2Br$ (1 eq), $-78^\circ$	A, R = SCH ₃ , R' = CH ₂ C ₆ H ₅ (73)	118, 630



TABLE XLII. THIOPHOSPHINATES

**End** The content of *n*-butyllithium can be determined by several methods. (95-98) Lithium salts are present in some commercial **Notes** 

*

- * *Ortho* metalation of methyl toluenesulfonate has been found with methyllithium. (231)
- * For drying tetrahydrofuran, see Org. Synth., 46, 105 (1966).
- * In most of the preparations lithium diisopropylamide is prepared first and the product to be metalated is then added.

# References

- 1. H. Gilman and J. W. Morton, Jr., Org. React., 8, 258 (1954).
- 2. J. M. Mallan and R. L. Bebb, Chem. Rev., 69, 693 (1969).
- 3. D. J. Peterson, Organomet. Chem. Rev., Sect. A, 7, 295 (1972).
- 4. D. Seebach and K. H. Geiss, in *New Applications of Organometallic Chemistry*, D. Seyferth, Ed., pp. 1–92, Elsevier, Amsterdam, 1976.
- 5. O. W. Lever, Jr., Tetrahedron, 32, 1943 (1976).
- A. V. Dombrovskii and V. A. Dombrovskii, Russ. Chem. Rev., **35**, 733 (1966);
   A. W. Johnson, Y *lid Chemistry*, Academic Press, New York, 1966;
   J. Boutagy and R. Thomas, Chem. Rev., **74**, 87 (1974).
- 7. W. S. Wadsworth, Jr., Org. React. 25, 73 (1977).
- 8. D. A. Evans and G. C. Andrews, Acc. Chem. Res., 7, 147 (1974).
- D. Seebach, Synthesis, **1969**, 17; D. Seebach, Angew. Chem., Int. Ed. Engl. **8**, 639 (1969).
- 10. D. Seebach and D. Enders, Angew. Chem., Int. Ed. Engl. 14, 15 (1975).
- 11. M. Schlosser, Angew. Chem., Int. Ed. Engl., 13, 701 (1974).
- E. Block, *Reactions of Sulfur Compounds*, Academic Press, New York, 1978.
- 13. D. L. J. Clive, Tetrahedron, 34, 1049 (1978).
- 14. A. J. Hubert and H. Reimlinger, Synthesis, **1969**, 97; C. D. Broaddus, Acc. Chem. Res., **1**, 231 (1968).
- 15. U. Schöllkopf, Angew. Chem., Int. Ed. Engl., 9, 763 (1970).
- H. E. Zimmermann, in *Molecular Rearrangements*, P. de Mayo, Ed., Vol. 1, p. 345, Interscience, New York, 1963.
- 17. R. Kow and M. W. Rathke, J. Am. Chem. Soc., 95, 2715 (1973).
- W. H. Puterbaugh and C. R. Hauser, J. Am. Chem. Soc., 85, 2467 (1963).
- 18a. L. Benadjita-Iguertsira, 3rd Cycle Thesis, Orsay, July 8, 1980. The carbanions from N-oxides of dimethylbenzylamine and of dibenzylmethylamine are unstable and give several compounds including substituted piperazines.
- 19. H. W. Thompson and B. S. Huegi, Chem. Commun., **1973**, 636.
- 20. E. J. Corey and D. E. Cane, J. Org. Chem., 35, 3405 (1970).
- 21. U. Schöllkopf and F. Gerhart, Angew. Chem., Int. Ed. Engl., **7**, 805 (1968).
- 22. D. Hoppe, Angew. Chem., Int. Ed. Engl., 10, 933 (1972).
- 23. D. Seebach and D. Enders, Angew. Chem., Int. Ed. Engl., **11**, 1101, 1102 (1972).

- 24. D. Hoppe, Angew. Chem., Int. Ed. Engl., 14, 424 (1975).
- R. R. Fraser, G. Boussard, I. D. Potescu, J. J. Whiting, and Y. Wigfield, Can. J. Chem., **51**, 1109 (1973).
- 26. P. Coutrot, M. Dreux, and P. Savignac, C. R. Acad. Sci., Ser. C, **281**, 131 (1975).
- 27. P. Savignac, M. Dreux, and Y. Leroux, Tetrahedron Lett., 1974, 2651.
- 28. P. Savignac and Y. Leroux, J. Organomet. Chem., 57, C47 (1973).
- 29. E. Negishi and A. R. Day, J. Org. Chem., 30, 43 (1965).
- 29a. D. Seebach, R. Henning, F. Lehr, and J. Gonnermann, Tetrahedron Lett., **1977**, 1161.
- 30. F. Mercier, R. Epsztein, and S. Holand, Bull. Soc. Chim. Fr., 1972, 690.
- 31. R. West, R. Lowe, H. F. Stewart, and A. Wright, J. Am. Chem. Soc., **93**, 282 (1971).
- 32. W. C. Still and T. L. MacDonald, J. Am. Chem. Soc., 96, 5561 (1974).
- 33. G. Stork and L. Maldonado, J. Am. Chem. Soc., 93, 5286 (1971).
- 34. R. Mantione, M. L. Martin, G. J. Martin, and H. Normant, Bull. Soc. Chim. Fr., **1967**, 2912.
- M. Jones, P. Temple, E. Thomas, and G. H. Whitham, J. Chem. Soc., Perkin. Trans. 1, **1974**, 433.
- 36. G. Sturtz and B. Corbel, C. R. Acad. Sci., Ser. C, 276, 1807 (1973).
- 37. H. Gilman and H. Hartzfeld, J. Am. Chem. Soc., 73, 5878 (1951).
- 38. L. Horner, H. Hoffmann, H. G. Wippel, and G. Klahre, Chem. Ber., **92**, 2499 (1959).
- 39. J. P. Lampin, L. Eberhard, and F. Mathey, Bull. Soc. Chim. Fr., **1972**, 3494.
- 40. J. P. Lampin, F. Mathey, and B. Bartet, Bull. Soc. Chim. Fr., **1971**, 317.
- 41. G. Lavielle, G. Sturtz, and H. Normant, Bull. Soc. Chim. Fr., **1967**, 4186.
- 42. E. J. Corey and D. E. Cane, J. Org. Chem., 34, 3053 (1969).
- 43. K. H. Geiss, B. Seuring, P. Pieter, and D. Seebach, Angew. Chem., Int. Ed. Engl., **13**, 479 (1974).
- 44. J. F. Biellmann and J. B. Ducep, Tetrahedron Lett., **1968**, 5629.
- 45. H. Takahashi, K. Oshima, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., **95**, 5803 (1973).
- 46. K. Hirai and Y. Kishida, Tetrahedron Lett., 1972, 2743.
- 47. A. Wright, D. Ling, P. Boudjouk, and R. West, J. Am. Chem. Soc., **94**, 4784 (1972).
- 48. T. Hayashi, Tetrahedron Lett., **1974**, 339.
- 49. A Fröling and J. F. Arens, Rec. Trav. Chim. Pays-Bas, 81, 1009 (1962).

- K. Goda, R. Okazaki, K.-Y. Akiba, and N. Inamoto, Tetrahedron Lett., 1976, 181.
- T. Durst, R. R. Frazer, M. R. McClory, R. R. Swingle, R. Viau, and Y. Y. Wigfield, Can. J. Chem., 48, 2148 (1970).
- 52. M. Kobayashi, A. Mori, and H. Minato, Bull. Chem. Soc. Jpn., **47**, 891 (1974).
- 53. E. A. Lehto and D. A. Shirley, J. Org. Chem., 22, 989 (1957).
- 54. W. E. Truce and D. J. Vrencur, J. Org. Chem., **35**, 1226 (1970).
- 55. E. M. Kaiser, L. E. Solter, R. A. Schwarz, R. D. Beard, and C. R. Hauser, J. Am. Chem. Soc., **93**, 4237 (1971).
- 56. P. Beak and J. W. Worley, J. Am. Chem. Soc., 92, 4142 (1970).
- 57. M. S. Karasch and E. Sternfeld, J. Am. Chem. Soc., 61, 2318 (1939).
- 58. R. H. Mitchell, Chem. Commun., 1974, 990.
- 59. H. J. Reich and S. K. Shah, J. Am. Chem. Soc., 97, 3250 (1975).
- 60. D. F. Hoeg and D. I. Lusk, J. Am. Chem. Soc., 86, 928 (1964).
- 61. G. Pourcelot and P. Cadiot, Bull. Soc. Chim. Fr., **1966**, 3016.
- J. Hine, L. G. Mahone, and C. L. Liotta, J. Am. Chem. Soc., 89, 5911 (1967).
- 63. J. Hine and P. D. Dalsin, J. Am. Chem. Soc., 94, 6998 (1972).
- 64. E. A. Yakovleva, E. N. Tsvetkov, D. I. Lobanov, M. I. Kabachnik, and A. I. Shatenshtein, Tetrahedron Lett., **1966**, 4161.
- H. Kloosterziel and J. A. A. Van Drunen, Rec. Trav. Chim. Pays-Bas, 89, 32 (1970).
- F. G. Bordwell, W. S. Matthews, and N. R. Vanier, J. Am. Chem. Soc., 97, 442 (1975).
- F. G. Bordwell, J. E. Bares, J. E. Bartmess, G. E. Drucker, J. Gerhold, G. J. McCollum, M. Van Der Puy, N. R. Vanier, and W. S. Matthews, J. Org. Chem., 42, 326 (1977).
- 68. A. Streitwieser, Jr. and S. P. Ewing, J. Am. Chem. Soc., 97, 190 (1975).
- 69. F. G. Bordwell, R. H. Imes, and E. S. Steiner, J. Am. Chem. Soc., **89**, 3905 (1967).
- 70. G. Gaviraghi and G. Pagani, J. Chem. Soc., Perkins Trans. 2, 1973, 50.
- 71. S. Bradamante, A. Mangia, and G. Pagani, Tetrahedron Lett., **1970**, 3381.
- 72. M. B. Davy, K. T. Douglas, J. S. Loran, A. Steltner, and A. Williams, J. Am. Chem. Soc., **99**, 1196 (1977).
- 73. R. R. Fraser and L. K. Ng, J. Am. Chem. Soc., 98, 4334 (1976).
- 74. F. G. Bordwell, M. Van Der Puy, and N. R. Vanier, J. Org. Chem., **41**, 1885 (1976).

- 75. A. Streitwieser, Jr. and J. E. Williams, J. Am. Chem. Soc., 97, 191 (1975).
- 76. F. Bernardi, I. G. Csizmadia, A. Mangini, H. B. Schlegel, M.-H. Whangbo, and S. Wolfe, J. Am. Chem. Soc., **97**, 2209 (1975).
- 77. N. D. Epiotis, R. L. Yates, F. Bernardi, and S. Wolfe, J. Am. Chem. Soc., 98, 5435 (1976).
- 78. J. M. Lehn and G. Wipff, J. Am. Chem. Soc., 98, 7498 (1976).
- J. M. Lehn, G. Wipff, and J. Demuynck, Helv. Chim. Acta, 60, 1239 (1977).
- 80. E. L. Eliel, Tetrahedron, **30**, 1503 (1974).
- 81. A. A. Hartmann and E. L. Eliel, J. Am. Chem. Soc., 93, 2572 (1971).
- J. B. Ducep, Doctoral Thesis, University of Strasbourg, February 6, 1971 (AO 5292).
- A. Streitwieser, Jr., P. C. Mowery, and W. R. Young, Tetrahedron Lett., 1971, 3931.
- S. K. Arora, R. B. Bates, W. A. Beavers, and R. S. Cutler, J. Am. Chem. Soc., 97, 6271 (1975).
- 85. W. E. Rhine and G. D. Stucky, J. Am. Chem. Soc., 97, 737 (1975).
- S. P. Patterman, I. L. Karle, and G. D. Stucky, J. Am. Chem. Soc., 92, 1150 (1970).
- 87. J. F. Biellmann and J. B. Ducep, Tetrahedron, 27, 5861 (1971).
- 88. R. J. Bushby and G. J. Ferber, Tetrahedron Lett., 1974, 3701.
- J. Hartmann, R. Muthukrishnan, and M. Schlosser, Helv. Chim. Acta, 57, 2261 (1974).
- 90. A Schouteeten and M. Julia, Tetrahedron Lett., 1975, 607.
- 91. J. F. Biellmann and J. Vicens, Tetrahedron Lett., 1974, 2915.
- 92. J. F. Biellmann and J. Vicens, unpublished results.
- 92a. D. H. O'Brien, C. R. Russell, and A. J. Hart, J. Am. Chem. Soc., 101, 633 (1979).
- 92b. S. Nishi and M. Matsuda, J. Am. Chem. Soc., **101**, 4632 (1979).
- 93. W. Schlenk and E. Bergmann, Justus Liebigs Ann. Chem., **464**, 35 (1928).
- 94. G. Wittig and W. Happe, Justus Liebigs Ann. Chem., 557, 205 (1947).
- 94a. C. G. Screttas and M. Micha-Screttas, J. Org. Chem., 44, 713 (1979).
- 94b. T. Cohen and J. R. Matz, J. Am. Chem. Soc., 102, 6900 (1980).
- 95. H. Gilman and A. H. Haubein, J. Am. Chem. Soc., 66, 1515 (1944).
- 96. K. E. Eberly, J. Org. Chem., 26, 1309 (1961).
- 97. S. C. Watson and J. F. Eastham, J. Organomet. Chem., 9, 165 (1967).
- 98. W. G. Kofron and L. M. Baclawski, J. Org. Chem., 41, 1879 (1976).

- 99. R. B. Bates, L. M. Kroposki, and D. E. Potter, J. Org. Chem., 37, 560 (1972).
- 100. M. Julia, F. Le Goffic, and A. Delamette, C. R. Acad, Sci., Ser. C, **270**, 838 (1970).
- 101. M. Julia, F. Le Goffic, and L. de Matos, C. R. Acad. Sci., Ser. C, **270**, 954 (1970).
- 102. M. Julia, A. Schouteeten, and M. Baillargé, Tetrahedron Lett., **1974**, 3433.
- 103. H. Ahlbrecht and J. Eichler, Synthesis, **1974**, 672.
- 104. J. F. Biellmann and D. Schirlin, unpublished results.
- 105. J. Hartmann, M. Stähle, and M. Schlosser, Synthesis, 1974, 888.
- 106. E. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1973, 2006.
- 107. T. H. Chan, E. Chang, and E. Vinokur, Tetrahedron Lett., 1970, 1137.
- 108. R. Corriu and J. Masse, J. Organomet. Chem., 57, C5 (1973).
- 109. D. Seebach, M. Kolb, and B. T. Gröbel, Tetrahedron Lett., 1974, 3171.
- 110. H. Normant and T. Cuvigny, Bull. Soc. Chim. Fr., **1965**, 1881.
- 111. D. F. Hoeg and D. I. Lusk, J. Organomet. Chem., 5, 1 (1966).
- 112. G. Köbrich, K. Flory, and R. H. Fischer, Chem. Ber., 99, 1793 (1966).
- 113. H. Ahlbrecht and G. Rauchschwalbe, Synthesis, 1973, 417.
- 114. J. E. Baldwin, G. A. Höfle, and O. W. Lever, Jr., J. Am. Chem. Soc., **96**, 7125 (1974).
- 115. R. Paul and S. Tchelitcheff, Bull. Soc. Chim. Fr., 1952, 808.
- 116. R. Paul and S. Tchelitcheff, C. R. Acad. Sci., Ser. C, 235, 1226 (1952).
- 117. R. Paul and S. Tchelitcheff, C. R. Acad. Sci, Ser. C, 232, 2230 (1951).
- 118. D. Seebach and K. H. Geiss, Angew. Chem., Int. Ed. Engl., **13**, 202 (1974).
- 119. T. Hylton and V. Boekelheide, J. Am. Chem. Soc., 90, 6887 (1968).
- 120. J. F. Biellmann, J. Blanzat, M. P. Goeldner, and D. Schirlin, unpublished results.
- 121. E. M. Kaiser and C. R. Hauser, Tetrahedron Lett., **1967**, 3341.
- 122. V. Pascali, N. Tangari, and A. Umani-Ronchi, J. Chem. Soc., Perkin Trans. 1, **1973**, 1166.
- 123. A. Bongini, D. Savoia, and A. Umani-Ronchi, J. Organomet. Chem., **112**, 1 (1976).
- 124. Y. Leroux and R. Mantione, J. Organomet. Chem., **30**, 295 (1971).
- 125. Y. Leroux and R. Mantione, Tetrahedron Lett., 1971, 591.
- 126. W. H. Glaze, J. Line, and E. G. Felton, J. Org. Chem., 30, 1258 (1965).
- 127. D. A. Evans, G. C. Andrews, and B. Buckwalter, J. Am. Chem. Soc., **96**, 5560 (1974).

- 128. A. Wright and R. West, J. Am. Chem. Soc., **96**, 3214 (1974).
- 129. K. Oshima, H. Takahashi, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., **95**, 2693 (1973).
- 130. P. L. Stotter and R. E. Hornish, J. Am. Chem. Soc., 95, 4444 (1973).
- 131. K. Oshima, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., **95**, 4446 (1973).
- 132. D. C. Dittmer, P. L. F. Chang, F. A. Davis, I. K. Stamos, and K. Takahashi, J. Org. Chem., **37**, 1116 (1972).
- 132a. M. Schlosser and P. Schneider, Angew. Chem., Int. Ed. Engl., **18**, 489 (1979).
- L. Brandsma, H. E. Wijers, and J. F. Arens, Rev. Trav. Chim. Pays-Bas, 82, 1040 (1963).
- 134. C. R. Hauser and T. M. Harris, J. Am. Chem. Soc., 81, 1154 (1959).
- 135. M. Kirilov and L. Van Huyen, Tetrahedron Lett., 1972, 4487.
- 135a. B. Renger, H. Hügel, W. Wykypiel, and D. Seebach, Chem. Ber., **111**, 2630 (1978).
- 135b. A. N. Tischler and M. H. Tischler, Tetrahedron Lett., **1978**, 3.
- 135c. A. N. Tischler and M. H. Tischler, Tetrahedron Lett., 1978, 3407.
- 135d. R. A. Moss and R. C. Munjal, Synthesis, 1979, 425.
- 136. R. M. Carlson, R. W. Jones, and A. S. Hatcher, Tetrahedron Lett., **1975**, 1741.
- 137. R. M. Carlson and J. L. Isidor, Tetrahedron Lett., 1973, 4819.
- 138. T. Hayashi and H. Midorikawa, Synthesis, 1975, 100.
- 139. I. Hori, T. Hayashi, and H. Midorikawa, Synthesis, **1975**, 727.
- 140. D. A. Evans, T. C. Crawford, T. T. Fujimoto, and R. C. Thomas, J. Org. Chem., **39**, 3176 (1974).
- 141. B. M. Trost and A. J. Bridges, J. Org. Chem., 40, 2014 (1975).
- 142. J. P. Demoute, D. Hainaut, and E. Toromanoff, C. R. Acad. Sci. Ser. C, **277**, 49 (1973).
- 143. E. J. Corey, J. A. Katzenellenbogen, S. A. Roman, and N. W. Gilman, Tetrahedron Lett., **1971**, 1821.
- 144. H. J. Reich, J. Org. Chem., 40, 2570 (1975).
- 145. M. Julia and A. Guy-Rouault, Bull. Soc. Chim. Fr., **1967**, 1411.
- 146. U. Schöllkopf, E. Eilers, and K. Hantke, Justus Liebigs Ann. Chem., **1976**, 969.
- 147. M. Julia and D. Arnould, Bull, Soc. Chim. Fr., 1973, 743.
- 148. R. V. M. Campbell, L. Crombie, D. A. R. Findley, R. W. King, G. Pattenden, and D. A. Whiting, J. Chem. Soc., Perkin Trans. 1, **1975**, 897.

- 149. W. S. Wadsworth, Jr. and W. D. Emmons, J. Am. Chem. Soc., **83**, 1733 (1961).
- 150. G. Sturtz and G. Lavielle, C. R. Acad. Sci., Ser. C, 261, 2679 (1965).
- 151. G. Lavielle and G. Sturtz, Bull, Soc. Chim. Fr., 1970, 1369.
- 152. K. Matsumoto, M. Suzuki, and M. Miyoshi, J. Org. Chem., **38**, 2094 (1973).
- 153. W. E. Truce and F. E. Roberts, J. Org. Chem., 28, 961 (1963).
- 154. R. W. Hoffmann and N. Maak, Tetrahedron Lett., 1976, 2237.
- 154a. K. W. Henneke, U. Schöllkopf, and T. Neudecker, Justus Liebigs Ann. Chem., **1979**, 1370.
- 155. D. Seyferth, G. J. Murphy, and R. A. Woodruff, J. Am. Chem. Soc., **96**, 5011 (1974).
- 156. R. P. Welcher, J. Org. Chem., 28, 1712 (1963).
- 157. C. Piechucki, Synthesis, **1976**, 187.
- 158. G. Cardillo, D. Savoia, and A. Umani-Ronchi, Synthesis, 1975, 453.
- 159. D. Seyferth, G. J. Murphy, and R. A. Woodruff, J. Organomet. Chem., 66, C29 (1974).
- 160. D. F. Hoeg, D. I. Lusk, and A. L. Crumbliss, J. Am. Chem. Soc., **87**, 4147 (1965).
- 161. M. Dagonneau and J. Vialle, Bull, Soc. Chim. Fr., **1972**, 2067.
- 162. P. Beak and J. W. Worley, J. Am. Chem. Soc., 94, 597 (1972).
- 163. L. Léger and M. Saquet, Bull, Soc. Chim. Fr., 1975, 657.
- 164. D. Seebach, M. Kolb, and B. T. Gröbel, Angew. Chem., Int. Ed. Engl., **12**, 69 (1973).
- 165. J. Berlan, M. L. Capmau, and W. Chodkiewicz, C. R. Acad. Sci., Ser. C, **273**, 295 (1971).
- 166a. K. Koosha, J. Berlan, M. L. Capmau, and W. Chodkiewicz, Bull. Soc. Chim. Fr., **1975**, 1284.
- 166b. K. Koosha, J. Berlan, M. L. Capman, and W. Chadkiewicz, Bull. Soc. Chim. Fr., **1975**, 1291.
- 167. F. Mathey and R. Mankowski–Favelier, Org. Magn. Reson., 4, 171 (1972).
- 168. G. Köbrich and E. Wagner, Angew. Chem., Int. Ed. Engl., **7**, 470 (1968).
- 169. B. W. Erickson, Org. Synth., 54, 19 (1974).
- 170. R. Mantione, A. Alves, P. P. Montijn, G. A. Wildschut, H. J. T. Bos, and L. Brandsma, Rec. Trav. Chim. Pays-Bas, 89, 97 (1970).
- 171. U. Schöllkopf and M. Eisert, Angew. Chem., 72, 349 (1960).
- 172. G. Wittig, Experientia, **14**, 389 (1958).

- 173. G. Wittig and Löhmann, Justus Liebigs Ann. Chem., 550, 260 (1942).
- 174. H. Schäfer, U. Schöllkopf, and D. Walter, Tetrahedron Lett., **1968**, 2809.
- 175. R. L. Letsinger, Angew. Chem., 70, 151 (1958).
- 176. R. L. Letsinger and D. F. Pollart, J. Am. Chem. Soc., 78, 6079 (1956).
- 177. P. T. Lansbury, V. A. Pattison, J. D. Sidler, and J. B. Bieber, J. Am. Chem. Soc., **88**, 78 (1966).
- 178. I. T. Harrison and B. Lythgoe, J. Chem. Soc., 1958, 843.
- 179. J. F. Biellmann and J. L. Schmitt, unpublished results.
- 180. V. Rautenstrauch, Helv. Chim. Acta, 54, 739 (1971).
- 181. P. P. Montijn and L. Brandsma, Rec. Trav. Chim. Pays-Bas, **83**, 456 (1964).
- 182. J. H. van Boom, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **85**, 580 (1966).
- 183. P. P. Montijn, H. M. Schmidt, J. H. van Boom, H. J. T. Bos, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, 84, 271 (1965).
- 184. M. Julia and D. Arnould, Bull. Soc. Chim. Fr., 1973, 746.
- 185. P. Savignac, Y. Leroux, and H. Normant, Tetrahedron, 31, 877 (1975).
- 186. D. H. Hunter and S. K. Sim, J. Am. Chem. Soc., **91**, 6202 (1969).
- 187. D. H. Hunter and S. K. Sim, Can. J. Chem., 50, 669 (1972).
- 188. D. H. Hunter and S. K. Sim, Can. J. Chem., 50, 678 (1972).
- 189. G. W. Klumpp and R. F. Schmitz, Tetrahedron Lett., 1974, 2911.
- 190. W. C. Still, Tetrahedron Lett., 1976, 2115.
- 191. J. N. Hines, M. J. Peagram, G. H. Whitham, and M. Wright, Chem. Commun., **1968**, 1593.
- 192. J. N. Hines, M. J. Peagram, E. J. Thomas, and G. H. Whitham, J. Chem. Soc., Perkin Trans. 1, **1973**, 2332.
- 193. H. Kloosterziel, J. A. A. Van Drunen, and P. Galama, Chem. Commun., 1969, 885.
- 194. J. J. Eisch and C. A. Kovacs, J. Organomet. Chem., 30, C97 (1971).
- 195. M. T. Reetz and D. Schinzer, Tetrahedron Lett., 1975, 3485.
- 196. T. Durst, R. Van Den Elzen, and M. J. LeBelle, J. Am. Chem. Soc., **94**, 9261 (1972).
- 197. G. Wittig and R. Clausnizer, Justus Liebigs Ann. Chem., **588**, 145 (1954).
- 198. U. Schöllkopf and D. Walter, Justus Liebigs Ann. Chem., **654**, 27 (1962).
- 199. U. Schöllkopf and W. Fabian, Justus Liebigs Ann. Chem., 642, 1

(1961).

- 200. U. Schöllkopf and H. Schäfer, Justus Liebigs Ann. Chem., **663**, 22 (1963).
- 201. J. J. Eisch, C. A. Kovacs, and S. G. Rhee, J. Organomet. Chem., **65**, 289 (1974).
- 202. V. Rautenstrauch, G. Büchi, and H. Wüest, J. Am. Chem. Soc., **96**, 2576 (1974).
- 203. H. Felkin and A. Tambuté, Tetrahedron Lett., 1969, 821.
- 204. H. Felkin and C. Frajerman, Tetrahedron Lett., 1977, 3485.
- 205. R. Brière, M. Chérest, H. Felkin, and C. Frajerman, Tetrahedron Lett., **1977**, 3489.
- 206. G. Sturtz and B. Corbel, C. R. Acad. Sci., Ser. C, 277, 395 (1973).
- 207. S. Hünig and G. Wehner, Synthesis, 1975, 391.
- 208. C. R. Hauser and S. W. Kantor, J. Am. Chem. Soc., 73, 1437 (1951).
- 209. U. Schöllkopf, K. Fellenberger, and M. Rizk, Justus Liebigs Ann. Chem., **734**, 106 (1970).
- 210. J. E. Baldwin, J. DeBernardis, and J. E. Patrick, Tetrahedron Lett., **1970**, 353.
- 211. J. E. Baldwin and J. E. Patrick, J. Am. Chem. Soc., 93, 3556 (1971).
- 212. V. Rautenstrauch, Chem. Commun., 1970, 4.
- 213. Y. Makisumi and S. Notzumoto, Tetrahedron Lett., 1966, 6393.
- 214. L. Crombie, G. Darnbrough, and G. Pattenden, Chem. Commun., **1976**, 684.
- 215a. V. Rautenstrauch, Helv. Chim. Acta, 55, 594 (1972).
- 215b. V. Rautenstrauch, Helv. Chim. Acta, 55, 3064 (1972).
- 216. J. F. Biellmann and J. B. Ducep, Tetrahedron Lett., 1971, 33.
- 217. D. S. Tarbell and W. E. Lovett, J. Am. Chem. Soc., 78, 2259 (1956).
- 218. T. Hayashi and H. Baba, J. Am. Chem. Soc., 97, 1608 (1975).
- 219. J. F. Biellmann and J. B. Ducep, Tetrahedron Lett., 1970, 2899.
- 220. J. F. Biellmann, J. B. Ducep, and J. Vicens, Tetrahedron, **32**, 1801 (1976).
- 221. D. Schirlin, Doctoral Thesis, University of Strasbourg, June 26, 1976 (AO 12912).
- 222. C. R. Hauser, S. W. Kantor, and W. R. Brasen, J. Am. Chem. Soc., **75**, 2660 (1953).
- 223. J. F. Biellmann and J. L. Schmitt, Tetrahedron Lett., 1973, 4615.
- 224. E. J. Corey and D. Seebach. Angew. Chem., Int. Ed. Engl., 4, 1075 (1965).
- 225. D. A. Evans, G. C. Andrews, T. T. Fujimoto, and D. Wells, Tetrahedron

Lett., **1973**, 1385.

- 226. H. Horan, J. P. McCormick, and D. Arigoni, Chem. Commun., 1973, 73.
- 227. E. Vedejs and J. P. Hagen, J. Am. Chem. Soc., 97, 6878 (1975).
- 228. L. Horner, H. Hoffmann, and V. G. Toscano, Chem. Ber., **95**, 536 (1962).
- 228a. K. Deuchert, U. Hertenstein, S. Hünig, and E. Wehner, Chem. Ber., **112**, 2045 (1979).
- 228b. R. Gräfing, H. D. Verkruijsse, and L. Brandsma, Chem. Commun., **1978**, 596.
- 229. D. Seebach and E. M. Wilka, Synthesis, 1976, 476.
- 230. W. H. Baarschers, Can. J. Chem., 54, 3056 (1976).
- 231. A. Marquet. Cercoa Thias, 94320 France, personal communication.
- 231a. W. Oppolzer and R. L. Snowdon. Tetrahedron Lett., 1976, 4186.
- 231b. W. S. Murphy and S. Wattanasin, Tetrahedron Lett., 1979, 1827.
- 232. M. Kirilov and V. Lachkova, Dokl. Akad. Nauk SSSR, **191**, 1295 (1970) [C. A., **73**, 35443f (1970)].
- 233. M. Kirilov and V. Lachkova, Dokl. Bolg. Akad. Nauk, **25**, 1363 (1972) [C. A., **78**, 58544g (1973)].
- 234. L. Brandsma, S. Hoff, and H. D. Verkruijsse, Rec. Trav. Chim. Pays-Bas, **92**, 272 (1973).
- 235. A. Kalir and D. Balderman, Synthesis, 1973, 358.
- 236. J. Petrova, P. Coutrot, M. Dreux, and P. Savignac, Synthesis, **1975**, 658.
- 237. J. Kattenberg, E. R. de Waard, and H. O. Huisman, Tetrahedron, **29**, 4149 (1973).
- 238. I. Murata, T. Tatsuoka, and Y. Sugihara, Tetrahedron Lett., 1973, 4261.
- 239. J. Blais, A. L'Honore, J. Soulié, and P. Cadiot, J. Organomet. Chem., **78**, 323 (1974).
- 240. A. G. Brook, J. M. Duff, P. F. Jones, and N. R. Davis, J. Am. Chem. Soc., **89**, 431 (1967).
- 240a. A. Hosomi, H. Hashimoto, and H. Sakurai, J. Org. Chem., **43**, 2551 (1978).
- 240b. P. W. K. Lau and T. H. Chan, J. Organomet. Chem., 1979, 179.
- 241. K. Kondo, A. Negishi, and K. Matsui, Jpn. Pat. 72 90,958 [C. A., **81**, 151783f (1974)].
- 242. M. Kodama, Y. Matsuki, and S. Ito, Tetrahedron Lett., 1975, 3065.
- 243. L. Horner, H. Hoffmann, and H. G. Wippel, Chem. Ber., **91**, 61 (1958).
- 244. G. Lavielle, C. R. Acad. Sci. Ser. C, 270, 86 (1970).
- 245. F. Kienzle, Helv. Chim. Acta, 56, 1671 (1973).

- 246. F. Gerhart and U. Schöllkopf, Tetrahedron Lett., **1968**, 6231.
- 247. K. Hirai, H. Matsuda, and Y. Kishida, Chem. Pharm. Bull., **20**, 2067 (1972).
- 248. G. Stork and L. Maldonado, J. Am. Chem. Soc., 96, 5272 (1974).
- 249. F. E. Ziegler and J. A. Schwartz, Tetrahedron Lett., 1975, 4643.
- 250. D. Seebach and H. F. Leitz, Angew. Chem., Int. Ed. Engl., **8**, 983 (1969).
- 251. T. Mukaiyama, K. Narasaka, and M. Furusato, J. Am. Chem. Soc., **94**, 8641 (1972).
- 252. J. Martel and C. Huynh, Bull. Soc. Chim. Fr., 1967, 985.
- 253. J. Martel, C. Huynh, E. Toromanoff, and G. Nominé, Bull. Soc. Chim. Fr., **1967**, 982.
- 253a. E. Ghera and Y. Ben-David, Tetrahedron Lett., **1979**, 4603.
- 254. S. T. D. Gough and S. Trippett, J. Chem. Soc., 1962, 2333.
- 255. R. J. P. Corriu, J. Masse, and D. Samate, J. Organomet. Chem., **93**, 71 (1975).
- 256. U. Schöllkopf and R. Schröder, Angew. Chem., Int. Ed. Engl., **10**, 333 (1971).
- 257. L. Horner, H. Hoffmann, H. Ertel, and G. Klahre, Tetrahedron Lett., **1961**, 9.
- 258. R. A. Ellison, W. D. Woessner, and C. C. Williams, J. Org. Chem., **37**, 2757 (1972).
- 258a. T. Nakai, T. Mimura, and A. Ari-Izumi, Tetrahedron Lett., 1977, 2425.
- 258b. T. Nakai, T. Mimura, and T. Kurokawa, Tetrahedron Lett., 1978, 2895.
- 258c. M. Mikolajczyk, S. Grzejszczak, A. Chefczynska, and A. Zatorski, J. Org. Chem., **44**, 2967 (1979).
- 259. L. Eberhard, J. P. Lampin, and F. Mathey, Tetrahedron, **29**, 2909 (1973).
- 260. M. Yamashita and R. Suemitsu, Chem. Commun., 1977, 691.
- 261. B. M. Trost and L. Weber, J. Org. Chem., 40, 3617 (1975).
- 262. A. H. Davidson and S. Warren, Chem. Commun., 1975, 148.
- 263. R. Gompper and H. U. Wagner, Angew. Chem., Int. Ed. Engl., **15**, 321 (1976).
- 264. G. Rauschwalbe and H. Ahlbrecht, Synthesis, **1974**, 663.
- 265. P. Savignac, P. Coutrot, and Y. Leroux, C. R. Acad. Sci., Ser. C., **279**, 609 (1974).
- 266. H. Kloosterziel and J. A. A. Van Drunen, Rec. Trav. Chim. Pays-Bas, **89**, 32 (1970).
- 267. D. Seebach, K. H. Geiss, and M. Pohmakotr, Angew. Chem., Int. Ed.

Engl., **15**, 437 (1976).

- 268. H. Ahlbrecht and C. Vonderheid, Synthesis, **1975**, 512.
- 269. T. Mukaiyama, K. Narasaka, K. Maekawa, and M. Furusato, Bull. Chem. Soc. Jpn, **44**, 2285 (1971).
- 270. K. Hirai and Y. Kishida, Org. Synth., **53**, 182 (1973). Unchecked procedure 1869.
- 271. D. A. Evans, G. C. Andrews, T. T. Fujimoto, and D. Wells, Tetrahedron Lett., **1973**, 1389.
- 272. R. Mantione and Y. Leroux, J. Organomet. Chem., 21, 5 (1971).
- 273. Y. Leroux and C. Roman, Tetrahedron Lett., 1973, 2585.
- 274. R. Mantione and A. Alves, C. R. Acad. Sci., Ser. C, 268, 997 (1969).
- 275. R. Mantione and Y. Leroux, Tetrahedron Lett., 1971, 593.
- 276. L. Brandsma, C. Jonker, and M. H. Berg, Rec. Trav. Chim. Pays-Bas, **84**, 560 (1965).
- 277. R. Mantione, A. Alves, P. P. Montijn, H. J. T. Bos, and L. Brandsma, Tetrahedron Lett., **1969**, 2483.
- 278. S. Torii, H. Tanaka, and Y. Tomotaki, Chem. Lett., **1974**, 1541.
- 279. P. Atlani, J. F. Biellmann, S. Dube, and J. J. Vicens, Tetrahedron Lett., **1974**, 2665.
- 280. K. Koosha and M. L. Capmau, C. R. Acad. Sci., Ser. C, **279**, 585 (1974).
- 281. G. A. Wildschut, J. H. Van Boom, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **87**, 1447 (1968).
- 281a. N. F. Swynnerton and P. L. Stotter, University of Texas, San Antonio, Texas, personal communication.
- 281b. P. W. K. Lau and T. H. Chan, Tetrahedron Lett., **1978**, 2383.
- 282. K. Oshima, H. Yamamoto, and H. Nozaki, Bull. Chem. Soc. Jpn., **48**, 1567 (1975).
- 283. K. Oshima, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., **95**, 7926 (1973).
- 284. M. Rivière and A. Lattes, Bull. Soc. Chim. Fr., 1967, 2539.
- 284a. Y. Yamamoto, H. Yatagai, and K. Maruyama, Chem. Lett., 1979, 385.
- 284b. Y. Yamamoto, H. Yatagai, and K. Maruyama, Chem. Commun., **1979**, 157.
- 284c. D. Ayalon–Chass, E. Ehlinger, and P. Magnus, Chem. Commun., **1977**, 772.
- 285. A. Wright and R. West, J. Am. Chem. Soc., 96, 3227 (1974).
- 286. P. Savignac and M. Dreux, Tetrahedron Lett., 1976, 2025.
- 287. T. Durst, R. Viau, and M. R. McClory, J. Am. Chem. Soc., 93, 3077

(1971).

- 288. T. Durst and M. Molin, Tetrahedron Lett., 1975, 63.
- 289. R. Viau and T. Durst, J. Am. Chem. Soc., 95, 1346 (1973).
- 290. K. Nishihata and M. Nishio, Chem. Commun., 1971, 958.
- 291. K. Nishihata and M. Nishio, Tetrahedron Lett., 1972, 4839.
- 292. K. Nishihata and M. Nishio, Tetrahedron Lett., 1976, 1695.
- 293. J. F. Biellmann and J. J. Vicens, Tetrahedron Lett., 1978, 467.
- 294. P. Brownbridge and S. Warren, Chem. Commun., 1975, 820.
- 295. J. F. Biellmann and J. B. Ducep, Tetrahedron Lett., **1969**, 3707.
- 296. L. J. Altman, L. Ash, and S. Marson, Synthesis, **1974**, 129.
- 297. K. A. Parker and W. S. Johnson, J. Am. Chem. Soc., 96, 2556 (1974).
- 298. T. Nakai, H. Shiono, and M. Okawara, Tetrahedron Lett., 1975, 4027.
- 298a. R. B. Boar, D. W. Hawkins, J. F. McGhie, and D. H. R. Barton, J. Chem. Soc., Perkin Trans. 1, **1973**, 654.
- 299. K. Kondo, A. Negishi, and D. Tunemoto, Angew. Chem., Int. Ed. Engl., **13**, 407 (1974).
- 300. K. Narasaka, M. Hayashi, and T. Mukaiyama, Chem. Lett. 1972, 259.
- 300a. Y. Ueno, and M. Okawara, J. Am. Chem. Soc., 101, 1893 (1979).
- 300b. Y. Ueno, S. Aoti, and M. Okawara, J. Am. Chem. Soc., **101**, 5414 (1979).
- 301. L. D. Bergelson and M. M. Shemyakin, Pure Appl. Chem., **9**, 271 (1964).
- 302. L. Horner and W. Klink, Tetrahedron Lett., 1964, 2467.
- 303. A. H. Davidson and S. Warren, J. Chem. Soc., Perkin Trans. 1, **1976**, 639.
- 304. J. J. Richard and C. V. Banks, J. Org. Chem., 28, 123 (1963).
- 305. A. Fischli, H. Mayer, W. Simon, and H. J. Stoller, Helv. Chim. Acta, **59**, 397 (1976).
- 306. P. S. Marchand, M. Rosenberger, G. Saucy, P. A. Wehrli, H. Wong, L. Chambers, M. P. Ferro, and W. Jackson, Helv. Chim. Acta, **59**, 387 (1976).
- 307. P. A. Grieco, Chem. Commun., 1972, 702.
- 308. D. A. Evans, G. C. Andrews, and C. L. Sims, J. Am. Chem. Soc., **93**, 4956 (1971).
- 308a. H. J. Reich and S. K. Shah, J. Am. Chem. Soc., **99**, 263 (1977).
- 309. Q. Branca, Doctoral Thesis. Eidgenossische Technische Hochschule, 1970 (4575).
- M. Fabrizio, Diploma, Eidgenossiche Technische Hochschule, September 16, 1971.

- 310a. H. Okamura and H. Takei, Tetrahedron Lett., 1979, 3425.
- 311. K. Hirai and Y. Kishida, Heterocycles, **2**, 185 (1974).
- 312. K. Deuchert, U. Hertenstein, and S. Hünig, Synthesis, 1973, 777.
- 313. T. Nakai, H. Shiono, and M. Okawara, Tetrahedron Lett., 1974, 3625.
- 314. E. J. Corey, B. W. Erickson, and R. Noyori, J. Am. Chem. Soc., **93**, 1724 (1971).
- 315. K. Kondo, K. Matsui, and A. Negishi, Chem. Lett., 1974, 1371.
- 316. S. Hoff, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **88**, 609 (1969).
- 316a. P. J. Kocienski, Tetrahedron Lett., 1979, 441.
- 317. D. Hoppe, Angew. Chem. Int. Ed. Engl., 13, 789 (1974).
- 318. D. S. Matteson and K. Arne, J. Am. Chem. Soc., 100, 1325 (1978).
- 319. P. A. Grieco and Y. Masaki, J. Org. Chem., **39**, 2135 (1974).
- 320. S. Yamada. N. Oh-Hashi, and K. Achiwa, Tetrahedron Lett., **1976**, 2561.
- 321. E. E. Van Tamelen and J. R. Heys, J. Am. Chem. Soc., **97**, 1252 (1975).
- 322. P. Chabades and M. Julia, Ger. Pat. 2,224,606 (1972) [C. A., **78**, 43775j (1973)].
- 323. H. Pommer, Angew. Chem., 72, 911 (1960).
- 324. A. Fischli and H. Mayer, Helv. Chim. Acta, 58, 1584 (1975).
- 325. H. Pommer, Angew. Chem., 72, 811 (1960).
- 326. M. Julia and D. Uguen, Bull. Soc. Chim. Fr., 1976, 513.
- 327. L. J. Altman, L. Ash, R. C. Kowerski, W. W. Epstein, B. R. Larsen, H. C. Rilling, F. Muscio, and D. E. Gregonis, J. Am. Chem. Soc., 94, 3257 (1972).
- 327a. V. Rautenstrauch. Chem. Commun., 1978, 519.
- 327b. T. Takahashi, K. Kasuga, M. Takahashi, and J. Tsuji, J. Am. Chem. Soc., **101**, 5072 (1979).
- 328. L. Crombie, D. A. R. Findley, and D. A. Whiting, Chem. Commun., **1972**, 1045.
- 329. E. J. Corey and R. Noyori, Tetrahedron Lett., 1970, 311.
- 330. S. F. Dyke, E. P. Tiley. A. W. C. White, and D. P. Gale, Tetrahedron, **31**, 1219 (1975).
- 331. T. Durst, R. Viau, R. Van Den Elzen, and C. H. Nguyen, Chem. Commun., **1971**, 1334.
- 332. P. Chabardes, M. Julia, and A. Menet, Ger. Pat. 2,305,215 (1973) [C. A., **79**, 126671n (1973)].
- 333. A. G. Abatjoglou and E. L. Eliel, J. Org. Chem., 39, 3042 (1974).

- 334. A. M. Aguiar, J. Giacin, and A. Mills, J. Org. Chem., 27, 674 (1962).
- 335. W. Amrein and K. Schaffner, Helv. Chim. Acta, 58, 380 (1975).
- 336. W. H. Baarschers, and T. L. Loh, Tetrahedron Lett., 1971, 3483.
- 337. H. J. Baker and J. Starting, Rec. Trav. Chim. Pays-Bas, 54, 170 (1935).
- 338. H. J. Baker and J. Starting, Rec. Trav. Chim. Pays-Bas, 54, 618 (1935).
- 339. H. J. Baker and G. J. de Jong, Rec. Trav. Chim. Pays-Bas, **67**, 884 (1948).
- 340. H. J. Baker and G. J. de Jong, Rec. Trav. Chim. Pays-Bas, **70**, 377 (1951).
- 341. J. E. Baldwin, R. E. Hackler, and R. M. Scott, Chem. Commun., **1969**, 1415.
- 342. A. J. Bartlett, T. Laird, and W. D. Ollis, J. Chem. Soc., Perkin Trans. 1, 1975, 1315.
- 343. D. J. Bennett, G. W. Kirby, and V. A. Moss, Chem. Commun., **1967**, 218.
- 344. E. Bergmann and J. Hervey, Ber., 62, 893 (1929).
- 345. K. D. Berlin, B. S. Rathore, and M. Peterson, J. Org. Chem., **30**, 226 (1965).
- 346. V. Boeckelheide, P. H. Anderson, and T. A. Hylton, J. Am. Chem. Soc. **96**, 1558 (1974).
- 347. R. K. Boeckman, Jr., K. J. Bruza, J. E. Baldwin, and O. W. Lever, Jr., Chem. Commun., **1975**, 519.
- 348. J. Böescken and E. de Roy van Zuydewyn, Proc. Acad. Sci. (Amsterdam), **40**, 23 (1937) [C.A., **31**, 49537 (1937)].
- 349. S. Bradamante, S. Maiorana, A. Mangia, and G. Pagani, J. Chem. Soc. B, 1971, 74.
- 350. S. Bradamante, A. Magnia, and G. Pagani, J. Chem. Soc. B, 1971, 545.
- 351. L. Brandsma and H. D. Verkruysde, Rec. Trav. Chim. Pays-Bas, **93**, 319 (1974).
- 352. L. Brandsma, Rec. Trav. Chim. Pays-Bas, 89, 593 (1970).
- 353. C. D. Broaddus, J. Am. Chem. Soc., 87, 3706 (1965).
- 354. C. D. Broaddus, J. Org. Chem., 30, 4131 (1965).
- 355. C. D. Broaddus, J. Am. Chem. Soc., 88, 3863 (1966).
- 356. A. G. Brook, J. M. Duff, and D. G. Anderson, Can. J. Chem., 48, 561 (1970).
- 357. A. G. Brook, G. E. Le Grow, and D. M. MacRae, Can. J. Chem., **45**, 239 (1967).
- 358. G. Büchi and R. M. Freidinger, J. Am. Chem. Soc., 96, 3332 (1974).
- 359. G. Cainelli, N. Tangari, and A. Unami-Ronchi, Tetrahedron, 28, 3009

(1972).

- 360. R. G. Carlson and W. S. Mardis, J. Org. Chem., 40, 817 (1975).
- 361. L. A. Carpino and L. V. McAdams, III, J. Am. Chem. Soc., **87**, 5804 (1965).
- 362. J. Cast, T. S. Stevens, and J. Holmes, J. Chem. Soc., 1960, 3521.
- 363. P. Caubère and M. F. Hochu, Bull, Soc. Chim. Fr., 1968, 459.
- 364. P. Chabardes, M. Julia, and A. Menet, Ger. Pat. 2,305,217 (1973) [C. A., 79, 137320e (1973)].
- 365. P. Chabardes, M. Julia, and A. Menet, Ger. Pat. 2,305,267 (1973) [C. A., 79, 126670t (1973)].
- 366. P. Chabardes, M. Julia, and A. Menet, Ger. Pat. 2,355,898 (1974) [C. A., 81, 63809p (1974)].
- 367. T. H. Chan and E. Chang, J. Org. Chem., 39, 3264 (1974).
- 368. A. Closse and R. Huguenin, Helv. Chim. Acta, 57, 533 (1974).
- 369. R. M. Coates and E. F. Johnson, J. Am. Chem. Soc., 93, 4016 (1971).
- 370. D. L. Coffen, T. E. McEntee, Jr., and D. R. Williams, Chem. Commun., **1970**, 913.
- 371. D. L. Coffen, B. D. Grant, and D. L. Williams, Int. J. Sulfur Chem., Part A, **1**, 113 (1971).
- 372. T. Cohen, D. A. Bennett, and A. J. Muro, Jr., J. Org. Chem., **41**, 2506 (1976).
- 373. B. Corbel, J. P. Paugam, M. Dreux, and P. Savignac, Tetrahedron Lett., **1976**, 835.
- 374. E. J. Corey and T. H. Lowry, Tetrahedron Lett., 1965, 793.
- 375. E. J. Corey and T. H. Lowry, Tetrahedron Lett., 1965, 803.
- 376. E. J. Corey and D. Seebach, J. Org. Chem., 31, 4097 (1966).
- 377. E. J. Corey, D. Seebach, and R. Freedman, J. Am. Chem. Soc., **89**, 434 (1967).
- 378. E. J. Corey, J. A. Katzenellenbogen, N. W. Gilman, S. A. Roman, and B. W. Erickson, J. Am. Chem. Soc., **90**, 5618 (1968).
- 379. E. J. Corey and H. A. Kirst, Tetrahedron Lett., 1968, 5041.
- 380. E. J. Corey and K. Achiwa, Tetrahedron Lett., 1969, 1837.
- 381. E. J. Corey and S. Terashima, Tetrahedron Lett., **1972**, 1815.
- 382. E. J. Corey and A. P. Kozikowski, Tetrahedron Lett., **1975**, 925.
- 383. D. J. Cram and R. D. Guthrie, J. Am. Chem. Soc., 87, 397 (1965).
- 384. D. Y. Curtin and M. Fletcher, J. Org. Chem., 19, 352 (1954).
- 385. T. Cuvigny, J. Normant, and H. Normant, C. R. Acad. Sci., Ser. C., **258**, 3502 (1964).
- 386. T. Cuvigny and P. Hullot, C. R. Acad. Sci., Ser. C., 272, 862 (1971).

- 387. M. Dagonneau, J. F. Hemidy, D. Cornet, and J. Vialle, Tetrahedron Lett., **1972**, 3003.
- 388. M. Dagonneau, C. R. Acad. Sci., Ser. C, 276, 1683 (1973).
- 389. M. Dagonneau and J. Vialle, Tetrahedron, **30**, 3119 (1974).
- 390. M. B. D'Amore and J. I. Brauman, Chem. Commun., 1973, 398.
- 391. G. Dauphin, L. David, B. Jamilloux, A. Kergomard, and H. Veschambre, Tetrahedron, **28**, 1055 (1972).
- 392. A. H. Davidson, P. K. G. Hodgson, D. Howells, and S. Warren, Chem. Ind. (London), **1975**, 455.
- 393. A. H. Davidson and S. Warren, Chem. Commun., 1976, 181.
- 394. E. de Roy van Zuydewijn, Rec. Trav. Chim. Pays-Bas, 56, 1047 (1937).
- 395. D. R. Dimmel and S. B. Gharpure, J. Am. Chem. Soc., 93, 3991 (1971).
- 396. J. Dunorgies, R. Calas, N. Ardoin, and C. Biran, J. Organomet. Chem., 32, C31 (1971).
- 397. Ch. Duschek, W. Höbold, R. Naick, H. Schmidt, and N. T. Yen, J. Prakt. Chem., **317**, 491 (1975).
- 398. J. A. Edwards, V. S. Schwarz, J. Fajkeos, M. L. Maddox, and J. H. Fried, Chem. Commun., **1971**, 292.
- 399. T. L. Emmick, U.S. Pat. 3,766,209 (1973) [C.A., 79, 146136b (1973)].
- 400. J. B. Evans and G. Marr, J. Chem. Soc., Perkins Trans. 1, 1972, 2502.
- 401. E. A. Fehnel and P. A. Lackey, J. Am. Chem. Soc., 73, 2473 (1951).
- 402. E. A. Fehnel, J. Am. Chem. Soc., **74**, 1569 (1952).
- 403. L. Field, J. R. Holsten, and R. D. Clark, J. Am. Chem. Soc., **81**, 2572 (1959).
- 404. L. J. Fliedner, Jr., M. J. Myers, J. M. Schor, and I. J. Pachtern, J. Med. Chem., **16**, 749 (1973).
- 405. U. Folli, D. Iarossi, and F. Taddei, J. Chem. Soc., Perkin Trans. 2, **1974**, 933.
- 406. U. Folli, D. Iarossi, and F. Taddei, J. Chem. Soc., Perkin Trans. 2, **1974**, 1658.
- 407. R. R. Fraser and F. J. Schuber, Chem. Commun., 1969, 1474.
- 408. R. R. Fraser and Y. Y. Wigfield, Tetrahedron Lett., 1971, 2515.
- 409. Y. Gaoni, Tetrahedron Lett., 1976, 2167.
- 410. J. F. Garst and C. D. Smith, J. Am. Chem. Soc., 98, 1526 (1976).
- 411. L. Ghosez, Université de Louvain, Louvain-la Neuve, Belgium, personal communication.
- 412. H. Gilman, R. A. Benkeser, and G. E. Dunn, J. Am. Chem. Soc., **72**, 1689 (1950).
- 413. H. Gilman and D. Aoki, Organomet. Chem., 2, 44 (1964).
- 414. Glaxo Laboratories Ltd., Fr. Pat. 1,528,530 (1968) [C.A., **71**, 38980y (1971)].
- 415. K. Goda and N. Inamoto, Chem. Lett., 1975, 1009.
- 416. P. A. Grieco, Chem. Commun., 1972, 486.
- 417. B. T. Gröbel and D. Seebach, Angew. Chem., Int. Ed. Engl., **13**, 83 (1974).
- 418. J. S. Grossert, J. Buter, E. W. H. Asveld, and R. M. Kellogg, Tetrahedron Lett., **1974**, 2805.
- 419. H. W. Gschwend, J. Am. Chem. Soc., 94, 8430 (1972).
- 420. K. D. Gundermann and P. Holtmann, Angew. Chem., Int. Ed. Engl., 5, 668 (1966).
- 421. R. D. Guthrie, W. Meister, and D. J. Cram, J. Am. Chem. Soc., **89**, 5288 (1967).
- 422. R. D. Guthrie, D. A. Jaeger, W. Meister, and D. J. Cram, J. Am. Chem. Soc., **93**, 5137 (1971).
- 423. R. D. Guthrie and J. L. Hedrick, J. Am. Chem. Soc., 95, 2971 (1973).
- 424. H. L. Hase, A. Schweig, H. Hahn, and J. Radloff, Tetrahedron, **29**, 469 (1973).
- 425. C. R. Hauser and C. R. Hance, J. Am. Chem. Soc., 74, 5091 (1952).
- 426. C. R. Hauser, W. R. Brasen, P. S. Skell, S. W. Kantor, and A. E. Brodhag, J. Am. Chem. Soc., **78**, 1653 (1956).
- 427. U. Hertenstein, S. Hünig, and M. Oller, Synthesis, 1976, 416.
- 428. J. Hine, L. G. Mahone, and C. L. Liotta, J. Org. Chem., 32, 2600 (1967).
- 429. K. Hirai, H. Matsuda, and Y. Kishida, Tetrahedron Lett., 1971, 4359.
- 430. K. Hirai and Y. Kishida, Tetrahedron Lett., 1972, 2117.
- 431. S. Hoff, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **87**, 1179 (1968).
- 432. S. Hoff, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **87**, 916 (1978).
- 433. S. Hoff, B. H. Steenstra, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **88**, 1284 (1969).
- 434. L. Horner and P. Beck, Chem. Ber., **93**, 1371 (1960).
- 435. L. Horner, H. Hoffman, G. Klahre, V. G. Toscano, and H. Ertel, Chem. Ber., **94**, 1987 (1971).
- 436. L. Horner, H. Hoffmann, W. Klink, H. Ertel, and V. G. Toscano, Chem. Ber., **95**, 581 (1962).
- 437. L. Horner, W. Klink, and H. Hoffmann, Chem. Ber., 96, 3133 (1963).
- 438. L. Horner and H. Winkler, Tetrahedron Lett., 1964, 3265.
- 439. A. J. Hubert, J. Chem. Soc. C, 1968, 2048.

- 440. M. Huché and P. Cresson, Tetrahedron Lett., 1975, 367.
- 441. P. Hullot and T. Cuvigny, Bull. Soc. Chim. Fr., 1973, 2989.
- 442. K. Hunger, U. Hasserodt, and F. Korte, Tetrahedron, 20, 1593 (1964).
- 443. S. Hünig and G. Wehner, Synthesis, **1975**, 180.
- 444. D. Y. Curtin and S. Lesbowitz, J. Am. Chem. Soc., 73, 2630 (1951).
- 445. B. I. Ionin and A. A. Petrov, Zh. Obshch. Khim., **33**, 432 (1963) [C.A., **59**, 656d (1963)].
- 446. D. A. Jaeger and D. J. Cram, J. Am. Chem. Soc., 93, 5153 (1971).
- 447. C. R. Johnson, A. Nakanishi, N. Nakanishi, and K. Tanaka, Tetrahedron Lett., **1975**, 2865.
- 448. F. N. Jones, M. F. Zinn, and C. R. Hauser, J. Org. Chem., **28**, 663 (1963).
- 449. M. Julia and M. Baillargé, C. R. Acad. Sci., Ser. C., 254, 4313 (1962).
- 450. M. Julia and J. M. Paris, Tetrahedron Lett., 1973, 4833.
- 451. M. Julia, D. Uguen, and A. Callipolitis, Bull. Soc. Chim. Fr., 1976, 519.
- 452. P. Jutzi and R. Sauer, J. Organomet. Chem., 50, C29 (1973).
- 453. E. M. Kaiser and C. R. Hauser, J. Am. Chem. Soc., 89, 4566 (1967).
- 454. E. M. Kaiser and R. D. Beard, Tetrahedron Lett., 1968, 2583.
- 455. E. M. Kaiser, R. D. Beard, and C. R. Hauser, J. Organomet. Chem., **59**, 53 (1973).
- 456. B. Kaniradl, E. Langer, H. Lehner, and K. Schlögl. Justus Liebigs Ann. Chem., **766**, 16 (1972).
- 457. M. S. Karasch, W. Nudenberg, and E. Sternfeld, J. Am. Chem. Soc., **62**, 2034 (1940).
- 458. M. S. Karasch and M. Kleiman, J. Am. Chem. Soc., 65, 11 (1943).
- 459. M. S. Karasch, W. Nudenberg, and E. K. Fields, J. Am. Chem. Soc., **66**, 1276 (1944).
- 460. E. G. Kataev, L. M. Kataeva, and G. A. Chmutova, Zh. Org. Khim., **2**, 2244 (1966) [C.A., **66**, 75790d (1967)].
- 461. T. Kauffmann, E. Köppelmann, and H. Berg, Angew. Chem., Int. Ed. Engl., **9**, 163 (1970).
- 462. T. Kauffmann, H. Berg, and E. Köppelmann, Angew. Chem., Int. Ed. Engl., **9**, 380 (1970).
- 463. T. Kauffmann, H. Berg, E. Ludorff, and A. Woltermann, Angew. Chem., Int. Ed. Engl., **9**, 960 (1970).
- 464. T. Kauffmann and E. Eidenschinck, Angew. Chem., Int. Ed. Engl., **10**, 739 (1971).
- 465. T. Kauffmann and E. Köppelmann, Angew. Chem., Int. Ed. Engl., **11**, 290 (1972).

- 466. T. Kauffmann, K. Habersaat, and E. Köppelmann, Angew. Chem., Int. Ed. Engl., **11**, 291 (1972).
- 467. T. Kauffman and R. Eidenschinck, Angew. Chem., Int. Ed. Engl., **12**, 568 (1973).
- 468. T. Kauffmann, A. Busch, K. Hubersaat, and E. Köppelmann, Angew. Chem., Int. Ed. Engl., **12**, 569 (1973).
- 469. T. Kauffman, Angew. Chem., Int. Ed. Engl., 13, 627 (1974).
- 470. A. S. Kende, D. Constantinides, S. J. Lee, and L. Liebeskind, Tetrahedron Lett., **1975**, 405.
- 471. J. F. King and J. R. Du Manoir, Can. J. Chem., **51**, 4082 (1973).
- 472. C. A. Kingsbury, J. Org. Chem., 37, 102 (1972).
- 473. M. Kirilov and J. Petrova, Chem. Ber., 101, 3467 (1968).
- 474. M. Kirilov and J. Petrova, Tetrahedron Lett., 1970, 2129.
- 475. M. Kirilov and J. Petrova, Chem. Ber., 103, 1047 (1970).
- 476. M. Kirilov, J. Petrova, and K. Petkancin, Chem. Ber., **104**, 173 (1971).
- 477. M. Kirilov, J. Petrova, S. Momehilova, and S. Galunski, Chem. Ber., 109, 1684 (1976).
- 478. M. Kodoma, Y. Matsuki, and S. Itô, Tetrahedron Lett., **1976**, 1121.
- 479. K. Kondo, A. Negishi, K. Matsui, D. Tunemoto, and S. Masamune, Chem. Commun., **1972**, 1311.
- 480. K. Kondo, K. Matsui, and A. Negishi, Jpn. Pat. 74 42,627 (1974) [C.A., **82**, 3777n (1975)].
- 481. K. Kondo, A. Negishi, and K. Matsui, Jpn. Pat. 74 47,371 (1974) [C.A., 82, 43180u (1975)].
- 482. K. Koosha, J. Berlan, and M. L. Capmau, C. R. Acad. Sci., Ser. C, **276**, 1633 (1973).
- 483. W. Kreiser and H. Wurziger, Tetrahedron Lett., 1975, 1669.
- 484. R. C. Krug and D. E. Boswell, J. Org. Chem., 27, 95 (1962).
- 485. V. Lachkova and M. Kirilov, Justus Liebigs Ann. Chem., 1974, 496.
- 486. J. P. Lampin and F. Mathey, C. R. Acad. Sci., Ser. C, 271, 169 (1970).
- 487. P. T. Lansbury and V. A. Pattison, J. Org. Chem., 27, 1933 (1962).
- 488. P. T. Lansbury and V. A. Pattison, J. Am. Chem. Soc., 84, 4295 (1962).
- 489. E. Leete, M. R. Chedekel, and G. B. Bodem, J. Org. Chem., **37**, 4465 (1972).
- 490. J. J. Lohmann, 3rd Cycle Thesis, University of Strasbourg (1976).
- 491. R. E. Ludt, G. P. Crowther, and C. R. Hauser, J. Org. Chem., **35**, 1288 (1970).
- 492. B. Lythgoe, T. A. Moran, M. E. N. Nambudiry, S. Ruston, J. Tideswell, and P. W. Wright, Tetrahedron Lett., **1975**, 3863.

- 493. F. L. Malanco and L. A. Maldonado, Synth. Commun., 6, 515 (1976).
- 494. R. Mantione, Bull. Soc. Chim. Fr., 1969, 4514.
- 495. R. Mantione, Bull. Soc. Chim. Fr., 1969, 4523.
- 496. R. Mantione and B. Kirschleger, C. R. Acad. Sci., Ser. C, **272**, 786 (1971).
- 497. R. Mantione and Y. Leroux, C. R. Acad. Sci., Ser C, 272, 2201 (1971).
- 498. J. P. Marino and W. B. Mesbergen, J. Am. Chem. Soc., **96**, 4050 (1974).
- 499. E. Maruszewska–Wieczorkowska, J. Michalski, and S. Showronska, Rocz. Chem., **30**, 1197 (1956) [C. A., **51**, 11347a (1957)].
- 500. F. Mathey and J. P. Lampin, Tetrahedron Lett., **1972**, 1949.
- 501. F. Mathey, Bull. Soc. Chim. Fr., **1973**, 2783.
- 502. F. Mathey, Tetrahedron, **30**, 3127 (1974).
- 503. F. Mathey and J. P. Lampin, C. R. Acad. Sci., Ser. C, 270, 1531 (1970).
- 504. P. M. McCurry, Jr., R. K. Singh, and S. Link, Tetrahedron Lett., **1973**, 1155.
- 505. W. Meister, R. D. Guthrie, J. L. Maxwell, D. A. Jaeger, and D. J. Cram, J. Am. Chem. Soc., **91**, 4452 (1969).
- 506. P. Metzner and J. Vialle, Bull. Soc. Chim. Fr., 1973, 1703.
- 507. A. I. Meyers and R. C. Strickland, J. Org. Chem., 37, 2579 (1972).
- 508. R. H. Mitchell, T. Otsubo, and V. Boekelheide, Tetrahedron Lett., **1975**, 219.
- 509. G. M. Mkryan and S. L. Mndzhoyan, Izv. Akad. Nauk. Arm. SSR, Khim. Nauki, **18**, 44 (1965) [C.A., **63**, 6842e (1965)].
- 510. P. P. Montijn, J. H. Van Boom, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **86**, 115 (1967).
- 511. K. Mori, M. Ohki, and M. Matsui, Tetrahedron, **30**, 715 (1974).
- 512. K. Mori, M. Ohki, and M. Matsui, Agric. Biol. Chem., 36, 1085 (1972).
- 513. I. Murata, K. Nakasuji, and Y. Nakajima, Tetrahedron Lett., 1975, 1895.
- 514. R. Muthukrishnan and M. Schlosser, Helv. Chim. Acta, 59, 13 (1976).
- 515. T. Nakai, H. Shiono, and M. Okawara, Chem. Lett., 1975, 249.
- 516. K. Nishihata and M. Nishio, J. Chem. Soc., Perkin Trans. 2, 1972, 1730.
- 517. M. Nishio, Chem. Commun., 1968, 562.
- 518. H. Normant and R. Mantione, C. R. Acad. Sci., Ser. C., **259**, 1635 (1964).
- 519. H. Normant and G. Sturtz, C. R. Acad. Sci., Ser. C., 260, 1984 (1965).
- 520. S. Oae, A. Ohno, and W. Tagaki, Chem. Ind. (London), 7, 304 (1962).
- 521. D. E. O'Connor and C. D. Broaddus, J. Am. Chem. Soc., **86**, 2267 (1964).

- 522. D. E. O'Connor and W. I. Lyness, J. Am. Chem. Soc., 86, 3840 (1964).
- 523. D. E. O'Connor and W. I. Lyness, J. Am. Chem. Soc., 85, 3044 (1963).
- 524. M. Ohki, K. Mori, and M. Matsui, Agric. Biol. Chem., **38**, 175 (1934).
- 525. P. R. Ortiz de Montellano, R. Castillo, W. Winson, and J. S. Wei, J. Am. Chem. Soc., **98**, 3020 (1976).
- 526. K. Oshima, K. Shimoji, H. Takahashi, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., **95**, 2694 (1973).
- 527. A. Padwa, M. Dharan, J. Smolanoff, and S. I. Wetmore, Jr., J. Am. Chem. Soc., **95**, 1954 (1973).
- 528. G. Pattenden, J. Chem. Soc. C, **1970**, 1404.
- 529. G. Pattenden and B. C. L. Weedon, J. Chem. Soc. C, 1968, 1984.
- 530. R. Paul, G. Roy, M. Fulchaire, and G. Collardeau, Bull. Soc. Chim. Fr., **1950**, 121.
- 531. R. Paul, M. Fulchaire, and G. Collardeau, Bull. Soc. Chim. Fr., **1950**, 668.
- 532. D. J. Peterson, J. Org. Chem., 33, 780 (1968).
- 533. J. M. Photis and L. A. Paquette, J. Am. Chem. Soc., 96, 4715 (1974).
- 534. C. Piechucki, Synthesis, **1974**, 869.
- 535. G. Pourcelot, M. Le Quan, M. P. Simonnin, and P. Cadiot, Bull. Soc. Chim. Fr., **1962**, 1278.
- 536. G. Pourcelot, P. Cadiot, and A. Willemart, C. R. Acad. Sci., Ser. C, **252**, 1630 (1961).
- 537. G. Pourcelot and C. Georgoulis, Bull. Soc. Chim. Fr., 1964, 866.
- 538. G. Pourcelot, C. R. Acad. Sci., 260, 2847 (1965).
- 539. C. C. Price and W. H. Snyder, J. Am. Chem. Soc., 83, 1773 (1961).
- 540. C. C. Price and W. H. Snyder, J. Org. Chem., 27, 4639 (1962).
- 541. C. C. Price and W. H. Snyder, Tetrahedron Lett., 1962, 69.
- 542. M. Prochazka and M. Palacek, Coll. Czech. Chem. Commun., **31**, 3744 (1966).
- 543. T. J. Prosser, J. Am. Chem. Soc., 83, 1701 (1961).
- 544. W. H. Puterbaugh and C. R. Hauser, J. Org. Chem., 28, 3465 (1963).
- 545. L. D. Quin, J. P. Gratz, and T. P. Barket, J. Org. Chem., **33**, 1034 (1968).
- 546. L. D. Quin and S. G. Borleske, Tetrahedron Lett., 1972, 299.
- 547. A. H. Raper and E. Rothstein, J. Chem. Soc., 1963, 1027.
- 548. V. Rautenstrauch, Helv. Chim. Acta, 57, 496 (1974).
- 549. C. A. Reece, J. O. Rodin, R. G. Brownlee, W. G. Duncan, and R. H. Silverstein, Tetrahedron, **24**, 4249 (1968).
- 550. D. Reisdorf and H. Normant, Organometal. Chem. Synth., 1, 375

(1972).

- 551. H. G. Richey, Jr., W. F. Erickson, and A. S. Heyn, Tetrahedron Lett., **1971**, 2187.
- 552. M. Rivière and A. Lattes, Bull. Soc. Chim. Fr., 1968, 4430.
- 553. A. Roedig and N. Detzer, Angew. Chem., Int. Ed. Engl., 7, 471 (1968).
- 554. A. Roedig and N. Detzer, Angew. Chem., Int. Ed. Engl., 7, 472 (1968).
- 555. E. Rothstein, J. Chem. Soc., **1937**, 309.
- 556. E. Rothstein, J. Chem. Soc., 1937, 317.
- 557. S. Rozen, I. Shahak, and E. D. Bergmann, Tetrahedron Lett., **1972**, 1837.
- 558. G. M. Rubottom and G. R. Stevenson, Tetrahedron Lett., 1972, 3591.
- 559. T. Saegusa, Y. Ito, H. Kinoshita, and S. Tomita, J. Org. Chem., **36**, 3316 (1971).
- 560. I. Sataty and C. Y. Meyers, Tetrahedron Lett., 1974, 4161.
- 561. J. Sauer and H. Prahl, Tetrahedron Lett., 1966, 2863.
- 562. P. H. M. Scheurs, J. Meijer, P. Vermeer, and L. Brandsma, Tetrahedron Lett., **1976**, 2387.
- 563. M. Schlosser, J. Organomet. Chem., 8, 9 (1967).
- 564. U. Schöllkopf, Angew. Chem., 72, 570 (1960).
- 565. U. Schöllkopf and M. Eisert, Justus Liebigs Ann. Chem., **664**, 76 (1963).
- 566. U. Schöllkopf, F. Gerhart, I. Hoppe, R. Harms, K. Hantke, K. H. Scheunemann, E. Eilers, and E. Blume, Justus Liebigs Ann. Chem., 1976, 183.
- 567. K. H. Schulte–Elte, V. Rautenstrauch, and G. Ohloff, Helv. Chim, Acta, 54, 1805 (1971).
- 568. N. V. Schwartz and A. G. Brook, J. Am. Chem. Soc., 82, 2439 (1960).
- 569. U. Schwieter, H. Gutmann, H. Lindlar, R. Marbet, N. Rigassi, R. Rüegg, S. F. Schaeren, and O. Isler, Helv. Chim. Acta, **49**, 369 (1966).
- 570. E. E. Schweizer, D. N. Crouse, and D. L. Dalrymple, Chem. Commun., **1969**, 354.
- 571. D. Seebach, B. W. Erickson, and G. Singh, J. Org. Chem., **31**, 4303 (1966).
- 572. D. Seebach and M. Kolb, Chem. Ind. (London) 1974, 687.
- 573. D. Seebach and E. J. Corey, J. Org. Chem., 40, 231 (1975).
- 574. D. Seebach, H. L. Leitz, and V. Ehrig, Chem. Ber., **108**, 1924 (1975).
- 575. D. Seebach and K. H. Geiss, J. Organomet, Chem. Libr., 1, 22 (1976).
- 576. H. A. Selling, J. A. Rompes, P. P. Montijn, S. Hoff, J. H. Van Boom, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **88**, 119

(1969).

- 577. E. J. Seus and C. V. Wilson, J. Org. Chem., 26, 5243 (1961).
- 578. C. W. Shoppee, J. Chem. Soc., 1928, 2567.
- 579. C. J. M. Stirling, J. Chem. Soc., 1964, 5856.
- 580. G. Sturtz, Bull. Soc. Chim. Fr., 1967, 1345.
- 581. G. Sturtz, B. Corbel, and J. P. Paugam, Tetrahedron Lett., 1976, 47.
- 582. P. Stütz and P. A. Stadler, Helv. Chim. Acta, 55, 75 (1972).
- 583. E. Taeger, C. Fiedler, A. Chiari, and H. P. Berndt, J. Prakt. Chem., **28**, 1 (1965).
- 584. T. Taguchi, H. Okamura, and H. Takei, Chem. Lett., 1975, 853.
- 585. D. S. Tarbell and M. A. McCall, J. Am. Chem. Soc., 74, 48 (1952).
- 586. D. F. Tavares and P. F. Vogt, Can. J. Chem., 45, 1519 (1967).
- 587. S. Torii, K. Uneyama, and M. Kuyama, Tetrahedron Lett., **1976**, 1513.
- 588. W. E. Truce and M. F. Amos, J. Am. Chem. Soc., 73, 3013 (1951).
- 589. T. L. V. Ulbrich, J. Chem. Soc., 1965, 6649.
- 590. J. H. Van Boom, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **87**, 97 (1968).
- 591. E. E. Van Tamelen, P. McCurry, and U. Huber, Proc. Natl. Acad. Sci. USA, **68**, 1294 (1971).
- 592. E. E. Van Tamelen, M. P. Seiler, and W. Wierenga, J. Am. Chem. Soc., **94**, 8229 (1972).
- 593. E. E. Van Tamelen, R. A. Holton, R. E. Holpa, and W. E. Konz, J. Am. Chem. Soc., **94**, 8228 (1972).
- 594. L. Velluz, J. Martel, and G. Noniné, C. R. Acad. Sci., Ser. C, **268**, 2199 (1969).
- 595. J. Villieras, C. Bacquet, and J. F. Normant, Bull. Soc. Chim. Fr., **1975**, 1797.
- 596. F. Vögtle and P. Neumann. Synthesis, 1973, 85.
- 597. D. H. Wadsworth, O. E. Schupp, III, E. J. Seus, and J. A. Ford, J. Org. Chem., **30**, 680 (1965).
- 598. T. J. Wallace, H. Pobiner, J. E. Hofmann, and A. Schriesheim, Proc. Chem. Soc., (London), **1963**, 137.
- 599. T. J. Wallace, H. Pobiner, J. E. Hofmann, and A. Schriesheim, J. Chem. Soc., **1965**, 1271.
- 600. R. Weil and N. Collignon, Bull. Soc. Chim. Fr., 1974, 253.
- 601. P. S. Wharton, G. A. Hiegel, and S. Ramaswami, J. Org. Chem., **29**, 2441 (1964).
- 602. H. W. Whitlock, Jr., J. Org. Chem., 29, 3129 (1964).
- 603. G. Wittig, H. Döser, and I. Lorenz, Justus Liebigs Ann. Chem., 562, 192

(1949).

- 604. G. Wittig, P. Davis, and G. Koenig, Chem. Ber., 84, 627 (1951).
- 605. G. Wittig and E. Stahnecker, Justus Liebigs Ann. Chem., **605**, 69 (1957).
- 606. G. Wittig, Angew. Chem., 66, 10 (1954).
- 607. S. Wolfe and A. Rauk, Chem. Commun., 1966, 778.
- 608. A. Wright and R. West, J. Am. Chem. Soc., 96, 3222 (1974).
- 609. T. C. Wu, D. Wittenberg, and H. Gilman, J. Org. Chem., 25, 596 (1960).
- 610. H. Zimmermannova and M. Prochazka, Coll. Czech. Chem. Commun., **30**, 286 (1965).
- 611. E. J. Corey, H. A. Kirst, and J. A. Katzenellenbogen, J. Am. Chem. Soc., **92**, 6314 (1970).
- 612. B. W. Metcalf and P. Casara, Chem. Commun., 1979, 119.
- 613. P. Casara and B. W. Metcalf, Tetrahedron Lett., 1978, 1581.
- 614. S. F. Martin and M. T. du Priest, Tetrahedron Lett., 1977, 3925.
- 615. E. Wenkert, P. Bakuzis, J. N. Dynak, and C. S. Swindell, Synth. Commun., **9**, 11 (1979).
- 616. T. Hiyana, M. Shinodo, and H. Nozaki, Tetrahedron Lett., 1978, 771.
- 617. S. Hünig and G. Wehner, Chem. Ber., 112, 2062 (1979).
- 618. A. P. Kozikowski and K. Isobe, Tetrahedron Lett., 1979, 833.
- 619. D. Seebach, R. Henning, and F. Lehr, Angew. Chem., Int. Ed. Engl., **17**, 458 (1978).
- 620. B. Renger and D. Seebach, Chem. Ber., **110**, 2334 (1977).
- 621. B. Renger, H. O. Kalinowski, and D. Seebach, Chem. Ber., **110**, 1866 (1977).
- 622. P. Blatcher, J. I. Grayson, and S. Warren, Chem. Commun., 1978, 657.
- 623. F. W. Sum and L. Weiler, J. Am. Chem. Soc., 101, 4401 (1979).
- 624. J. J. Eisch and J. E. Galle, J. Org. Chem., 44, 3279 (1979).
- 625. G. Olson, H. C. Cheung, K. D. Morgan, C. Neukom, and G. Saucy, J. Org. Chem., **41**, 3287 (1976).
- 626. P. Brownbridge and S. Warren, J. Chem. Soc., Perkin Trans. 1, **1977**, 1131.
- 627. E. E. Van Tamelen, E. G. Taylor, T. M. Leiden, and A. F. Kreft, III. J. Am. Chem. Soc., **101**, 7423 (1979).
- 628. M. Kodoma, S. I. Yokoo, H. Yamada, and S. Itô, Tetrahedron Lett., **1978**, 3121.
- 629. E. E. Van Tamelen and R. E. Hapla, J. Am. Chem. Soc., **101**, 6112 (1979).
- 630. K. H. Geiss, D. Seebach, and B. Seuring, Chem. Ber., 110, 1833

(1977).

# **Palladium-Catalyzed Vinylation of Organic Halides**

Richard F. Heck, University of Delaware, Newark, Delaware

### 1. Introduction

The palladium-catalyzed vinylation of organic halides provides a very convenient method for forming carbon—carbon bonds at unsubstituted vinylic positions. Generally the reaction does not require anhydrous or anaerobic conditions although it is advisable to limit access of oxygen when arylphosphines are used as a component of the catalyst. The transformation is valuable because it cannot be carried out in a single step by any other known method (except in certain Meerwein reactions). The general reaction is

$$H = C + RX + Base \xrightarrow{PdL_2X_2} R = C + Base H^+X^-$$

R = Aryl, heterocyclic, benzyl, or vinylic X = Bromide, iodide, or (rarely) chloride L = A ligand

The organic halide employed is limited to aryl, heterocyclic, benzyl, or vinyl types, with bromides and iodides seen most often. Halides with an easily eliminated beta-hydrogen atom (*i.e.*, alkyl derivatives) cannot be used since they form only olefins by elimination under the normal reaction conditions. The base needed may be a secondary or tertiary amine, sodium or potassium acetate, carbonate, or bicarbonate.

When nucleophilic secondary amines are used as coreactants with most vinylic halides, a variation occurs that often produces tertiary allylic amines as major products.

$$C = C + 2R_2NH \xrightarrow{PdL_2X_2} R_2N - C + R_2NH_2X^-$$

The catalyst is commonly palladium acetate, although palladium chloride or preformed triarylphosphine palladium complexes, as well as palladium on charcoal, have been used. A reactant, product, or solvent may serve as the ligand L in reactions involving organic iodides, but generally a triarylphosphine

or a secondary amine is required when organic bromides are used. The reaction, which occurs between *ca.* 50° and 160°, proceeds homogeneously. Solvents such as acetonitrile, dimethylformamide, hexamethylphosphoramide, N-methylpyrrolidinone, and methanol have been used, but are often not necessary. The procedure is applicable to a very wide range of reactants and yields are generally good to excellent.

Several variations of the reaction are known in which the organic halide is replaced by other reagents such as organometallics, diazonium salts, or aromatic hydrocarbons. These reactions are not discussed in detail, but are only briefly compared with the halide reaction. Other related reactions such as the palladium-catalyzed replacement of allylic substituents with carbanionic reagents, (1) the palladium-promoted nucleophilic substitutions at olefinic carbons, (2, 3) and the numerous palladium-catalyzed coupling reactions of halides and organometallics (4) are also beyond the scope of this review. The palladium-catalyzed vinylic substitution reaction has not yet received much attention from organic chemists, but its broad scope and simplicity demonstrate that it is a useful method for the synthesis of a variety of olefinic compounds.

### 2. Mechanism

The detailed mechanism of the reaction has not been established, but a fairly accurate approximation can be made based on the products obtained and the large amount of information available from related studies with other organopalladium reactions.

Stoichiometric reactions with organopalladium compounds indicate that they are involved in the vinylic substitution. (5, 6) If a palladium(II) complex or salt is the catalyst introduced, then it must be reduced under the reaction conditions, presumably by oxidizing some of the olefin present. (7) The palladium(0) complex or finely divided metal so formed then reacts with the organic halide to form the organopalladium halide intermediate. This species generally is solvated or coordinated with a pair of two-electron-donating ligands. The organopalladium complex then adds to the double bond of the olefin. The resulting adduct is believed to undergo elimination of a hydridopalladium halide if an  $sp^3$ -bonded hydrogen atom is present beta to the palladium group. The reaction is catalyzed by palladium in the presence of a base because the hydridopalladium halide dissociates reversibly and the base shifts the equilibrium to the palladium(0) species. This latter compound rereacts with the organic halide and the cycle begins again.

Catalyst formation:



Catalytic cycle:



The direction of addition of the organopalladium species to unsymmetrically

substituted double bonds appears to be largely sterically controlled. The organic group behaves as the larger part of the palladium complex, and it goes on the less substituted carbon atom of the double bond. (6) If an electron-withdrawing group is attached to one carbon atom of the double bond, however, addition of the organic group generally takes place exclusively or, at least, predominantly on the other carbon atom. The presence of an electron-donating substituent often causes mixtures of products to be formed with the sterically favored isomer predominating. For example, bromo- or iodobenzene reacts with a variety of olefins, giving products with the percentages of phenyl addition to the olefinic carbons shown below. (8) With



#### **Orientation of Addition of Bromo- or Iodobenzene to Various Olefins**

halides other than bromo- or iodobenzene the orientations are somewhat different. Similar electronic effects are noted when electron-donating or -withdrawing substituents are present in effective positions in the organic halide reactants. (8) For example, *p*-bromodimethylaniline gives more (33%) (9) 2-arylated product with 1-hexene than does bromobenzene (20%). (4)

A series of vinylic bromides have been reacted with 1-hexene and with piperidine or morpholine as the base. (10) Vinyl bromide and 2-bromopropene add exclusively terminally, but  $\beta$  -substituted vinylic bromides give mixtures.

Organic Bromide	Ratio of Terminal to Internal Addition to 1-Hexene
Br	> 20
Br	>20
Br	1.8
Br	1.8
Br	1.7
CH ₃ O ₂ C Br	4.6

The ratios of terminal to internal (2-position) addition of the organic groups to 1-hexene are as follows: (8, 10)

As in the bromo- or iodobenzene reactions shown above, the ratios of products obtained in the vinylic halide reactions are very dependent on the substituents on the double-bond carbons. For instance, all vinylic bromides listed above add exclusively terminally to methyl acrylate (11) and acrolein dimethyl acetal, (12a) whereas mixtures are obtained with all of the halides in the reaction with allyl alcohol. (12b)

A complication in the reaction may appear if there is more than one  $sp^3$ -bonded hydrogen atom beta to the palladium group in the olefin adduct. A mixture of geometric isomers may result or the double bond may be moved from its original position.

The addition of the organopalladium halide occurs in a *syn* manner and the elimination of the hydridopalladium halide also is *syn*. The stereospecificity of the reaction depends on the reaction conditions. The lower the reaction temperature, the higher are the stereo- and regiospecificity. (6) More important is the influence of triarylphosphines. Iodobenzene and *cis*-1-phenyl-1-propene with triethylamine and palladium acetate as the catalyst at 100° produce only 13.5% *cis*-1,2-diphenyl-1-propene, the stereospecific product, and 57% of the *trans* isomer. The same reaction with two equivalents of triphenylphosphine added per palladium acetate gives 76% of the *cis* isomer and only 15% of the *trans* product. The presence of the phosphine does not affect the direction of addition of the phenylpalladium halide since about the same amount,  $6 \pm 1\%$ ,

of 1,1-diphenyl-1-propene is obtained in both reactions. The triphenylphosphine is believed to decrease the



rate of readdition of the hydridopalladium group in an olefin  $\pi$  -complex intermediate to the double bond, relative to its rate of dissociation from the complex. Since the isomerization occurs by the reverse readdition to and reelimination of the metal hydride from the intermediate, the phosphine improves the selectivity of the reaction. (6) Similar effects of triphenylphosphine have been observed in stereospecific reactions with vinylic halides. (13)

When allylic alcohols are used as the olefinic compound, carbonyl compounds are usually obtained as significant or exclusive products. (14, 15) These result from palladium hydride elimination to the beta-hydrogen atom on the hydroxyl-bearing carbon atom. Interestingly, the minor allylic alcohol–organopalladium halide adducts (with the metal added to the carbon atom gamma to the hydroxyl group) also often have given carbonyl compounds. In fact, homoallyllic alcohols and alcohols with hydroxyl groups



farther removed also may give significant amounts of carbonyl compounds by way of multiple elimination–readdition reactions of the hydridopalladium halide group. (15) Rates of reaction of the allylic alcohols are generally higher than those of simple olefins, suggesting that hydroxyl coordination may be involved.

Double-bond migrations are much more facile in the allylic alcohol reactions

than in the reactions of most other olefins. Of course, if unhindered secondary amines are used rather than tertiary amines as bases, aldehyde products are converted into enamines under the reaction conditions. Fortunately, these are easily hydrolyzed by dilute aqueous acid to the aldehydes. (12b) Allylic tertiary amines in the reaction may give enamines directly. (12b)



Substitution with vinylic halides as substrates may produce another complication. In these cases  $\pi$ -allylic palladium complexes are often formed by palladium hydride elimination and readdition in the reverse direction. (13, 16)



If the  $\pi$ -allylic complex undergoes palladium hydride elimination, double bond migration from the initial position may result. In many reactions the  $\pi$ -allylic complexes are sufficiently stable that they either do not decompose or do so only slowly under the usual reaction conditions with a tertiary amine as the base. Loss of palladium hydride from the  $\pi$  complexes appears to occur easily only when the R substituent in the above formulation is a carboxylate anion or ester, nitrile, or aromatic group. The  $\pi$ -allylic complexes, fortunately, are susceptible to nucleophilic attack, and the use of unhindered secondary amines as the base leads to smooth catalytic reactions with formation of

tertiary allylic amines as major products in many instances. (10) Although two isomers are possible from attack at the two terminal carbon



atoms of the  $\pi$  -allylic system, the reaction is often selective. The nucleophilic attack appears to be very sensitive to the steric environment about the allylic carbon atoms. The less hindered position is normally preferred with one exception. When *gem*-dimethyl substituents are present on one of the carbon atoms, this carbon is preferentially attacked. The reason for this may be that the tertiary carbon atom in a  $\pi$ -allylic system is relatively weakly bonded to the palladium and the tertiary center is more reactive to the nucleophile in an  $S_N2'$ -type reaction. (10) The N-tertiary alkyl-N,N-dialkylamines so formed are very hindered amines that do not form if groups larger than *gem*-dimethyl are present.



When  $\pi$  -allylic complexes are formed, the stereochemistry about the double bond of the vinylic halide is lost because there is a facile equilibration of the *syn* and *anti* forms of the  $\pi$ -allylic complexes. The preferred isomers are those having the largest allylic substituents away from the metal. Products (dienes) that are produced by elimination and loss of palladium hydride before formation of the  $\pi$  -allylic complex retain the initial double-bond stereochemistry provided that the halide is not thermally isomerized under the reaction conditions. (10)

 $\pi$  -Allylic palladium complexes may also be intermediates in the reactions of conjugated dienes with organic halides. In these reactions the  $\pi$  -allylic structure is formed directly without the need of the palladium hydride elimination and readdition. (17)



These complexes also react with nucleophilic secondary amines in the same manner as the  $\pi$  -allylic complexes formed indirectly.



## 3. Scope and Limitations

#### 3.1. The Organic Halide

The major limitation in the organic halide is that  $sp^3$ -bonded hydrogen atoms beta to the halide group cannot be present. The palladium alkyls formed from these halides undergo palladium hydride elimination more rapidly than addition to olefins, and only elimination products are produced. Aryl, many heterocyclic, benzyl, and vinylic halides react normally. Other halides without beta  $sp^3$ -bonded hydrogen atoms exist, but for various reasons they do not react normally. Methyl halides, haloacetate esters, phenacyl bromide, and neopentyl bromide do not yield the expected products under the usual conditions. 1-Bromo-2-phenylacetylene does react normally, but a large amount of diphenylbutadiyne is also produced. (18)

A second limitation concerns the halogen atom to be used. lodides and bromides undergo reaction comparably in most instances, with the iodides usually being a little more reactive. For example, both bromo- and iodobenzene have been made to react with *cis*-1-phenyl-1-propene at 100° in the presence of a palladium acetate–triphenylphosphine catalyst. The reaction product mixtures were essentially the same, but the iodide reacted a little more than twice as rapidly as the bromide. (6)

$$C_{6}H_{5}X + C_{6}H_{5} + (C_{2}H_{5})_{3}N \xrightarrow{Pd(OAc)_{2} + 2P(C_{6}H_{5})_{3}}{100^{\circ}}$$

$$X = Br \text{ or } I$$

$$C_{6}H_{5} + C_{6}H_{5} + C_{6}H_{5} + (C_{6}H_{5})_{2}C = CHCH_{3}$$

$$(\sim 75\%) + (C_{6}H_{5})_{2}C = CHCH_{3}$$

Chlorides generally do not undergo reaction. Exceptions occur when palladium on carbon is used as a catalyst with sodium carbonate as base, although yields in general are low by this method. (19) Another exception is benzyl chloride, which undergoes reaction even without a triarylphosphine. (7) Organic fluorides apparently have not been tried.

A very wide range of substituents may be present in the organic halides. (20) The only substituent known to stop the reaction in an aromatic compound is an *ortho*-carboxyl group, although the *ortho*-methyl ester reacts normally. (21) Low yields of products may be obtained when aromatic bromides containing strongly electron-donating substituents are used. The reason for the low yields is generally that the phosphine in the catalyst is quaternized in a palladium-catalyzed reaction and/or the halide is reduced to hydrocarbon.



The reduction also occurs (more seriously) with similarly substituted aryl iodides. The first problem is solved by using hindered phosphines. Tri-*o*-tolylphosphine is the most generally useful one for this purpose. The success of reactions with strongly electron-donating substituents also depends on the reactivity of the olefin employed. Lower yields are obtained with the less reactive (more substituted) olefins. (20)

It should be kept in mind that triarylphosphines are not totally inert under the usual conditions for vinylation even if phosphonium salt formation does not occur. Reports of the palladium-catalyzed transfer of aryl groups from triarylphosphines to vinylic positions under the normal vinylation conditions (22) indicate that these arylated olefins may be minor side products. If this occurs, the triarylphosphine concentration is also reduced.

Quite hindered organic halides may be employed in the reaction, but reaction rates are usually low. Reaction of 2,5-diisopropylbromobenzene and methyl acrylate occurs in 79% yield at 125° in 20 hours, for example. (21)

Some limitations occur with heterocyclic halides as well. Successful



reactions occurred with methyl 5-bromofuranoate, 2- and 3-bromothiophene, 2-, 3-, and 4-bromopyridine, 2,6-dimethyl-4-bromopyridine, 3-bromoisoquinoline, 4-bromoisoquinoline, 5-bromoindole, and N-acetyl-3-bromoindole. The 2- and 4-bromopyridines react slowly and give low yields, however. Unsuccessful results were found with 3-bromoindole, 2-iodoquinoline, 2-bromothiazole, 5-bromouracil, and 4-bromo-5-phenylimidazole. (23)

A potential problem with the reactions of benzyl chloride or bromide is quaternization of both the amine base and the phosphine, if one is used. Best results are obtained with hindered amines (diisopropylethylamine) and phosphines. Vinylic halides that are activated for base-catalyzed elimination, such as methyl 2-bromoacrylate, also do not undergo the vinylic substitution reaction, presumably because elimination is favored over the substitution. Another problem appears to be the formation of vinylic tertiary amines (enamines) as minor side products in the vinylic halide–olefin–secondary amine reactions. These are apparently formed by a palladium-catalyzed alkylation of the amine with the vinylic halide. (24)

#### 3.2. The Olefin

The primary factor in determining the reactivity of the olefin is the size and number of the substituents on the double-bond carbon atoms. Rates of reaction and yields of product generally decrease with increasing size and number of substituents around the double bond. Ethylene is the most reactive olefin. (25) Most monosubstituted ethylenes react well also. Even disubstituted ethylenes often react in reasonable yields but at lower rates. Poor yields are often obtained with trisubstituted ethylenes, but details have been published for only one example. (14)

 $C_{6}H_{5}I + (CH_{3})_{2}C = CHCH_{2}OH + (C_{2}H_{5})_{3}N \xrightarrow{Pd(OAc)_{2}} (C_{6}H_{5})_{2} + C_{6}H_{5}C(CH_{3})_{2}CH_{2}CHO + (CH_{3})_{2}C = C(C_{6}H_{5})CH_{2}OH (C_{13\%}) (7\%) (13\%) + (CH_{3})_{2}CHCH(C_{6}H_{5})CHO (3\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%) (13\%$ 

Dimerization of the halides is frequently observed as a side reaction when the olefinic compounds are unreactive. Mixtures of products sometimes are produced from unsymmetrically substituted ethylene derivatives, as seen in the above example. The presence of electron-with-drawing substituents on a double-bond carbon atom generally directs the incoming organic group selectively to the other double-bond carbon atom. However, electron-donating substituents generally cause addition to both carbon atoms. The amount of addition to each carbon atom in these reactions is strongly influenced by steric effects in both the halide and olefin. The organic group of the organopalladium complex preferentially attacks the less substituted carbon atom of the double bond. Additions of organic groups to conjugated dienes often occur exclusively at the terminal carbon atom of the less substituted double bond of the diene system. (13, 26) An example is shown in the following equation. (25)



In general, conjugated dienes and  $\alpha$ ,  $\beta$ -unsaturated carbonyl compounds are more reactive than sterically similar monoenes. Preliminary results with some functionalized olefins show that acrylate esters react significantly faster with various vinylic halides than does acrylonitrile, with acrylonitrile in turn being more reactive than acrolein acetals. (27) Nevertheless acrolein dimethyl acetal and other  $\alpha$ ,  $\beta$ -unsaturated acetals or ketals are useful for producing 2,4-dienals from vinylic halides by way of the allylic amines and a hydrolysis–amine elimination reaction. For example, 2,4-nonadienal was obtained in an overall yield of 76% based upon 1-bromo-1-hexene as shown in the following equations:



Double-bond isomers often are formed when the possibility exists for elimination of different beta-hydrogen atoms. If cis or trans products are possible, the thermodynamically more stable olefin is favored. The situation is more complex when positional isomers are possible. The direction of elimination is believed to be controlled by the relative stabilities of the transition states on the way to the hydridopalladium halide–olefin  $\pi$  complexes. The various factors involved here in stabilizing the transition states are not well understood. However, it appears that the  $\pi$  complexes of the less substituted double-bond isomers are the more stable, and varying degrees of equilibration may occur during the reactions. (6) Equilibration is more rapid in the absence of a triarylphosphine than in its presence (if the reaction proceeds in its absence, see p. 360). Some isomerization may occur even in reactions when there is only one eliminatable beta hydrogen because of reverse hydride readdition and elimination of a hydrogen atom from a different carbon atom. This type of isomerization is suppressed by inclusion of a phosphine and is generally not serious. (13)

Some specific olefins that do not react well in the vinylic substitution are vinyl acetate, acrolein, and 3-buten-2-one. Vinyl acetate tends to produce mixtures of products, largely with loss of the acetate group. Both acrolein and 3-buten-2-one are often polymerized relatively rapidly under the reaction conditions. Their acetals or ketals, however, react normally. Mixtures may be obtained from acrolein acetals, however, as a result of elimination of palladium hydride in both possible directions. Allylic halides also fail in the reaction as either olefins or halides.

## 4. Comparison with Related Reactions

The Meerwein arylation reaction sometimes produces arylated olefins as products and/or the usual chloroarylated olefins. This reaction, which has been reviewed in Volumes 11 and 24 of this series, (28) is mainly limited to aryldiazonium salt reactions with activated olefins, so it does not overlap in utility to a significant extent with the vinylic substitution reaction.

More important, perhaps, are variations of the vinylic substitution with reactants other than organic halides. A reaction analogous to the Meerwein arylation occurs between aryldiazonium salts and olefins with palladium(0) catalysts. (29, 30) Vinylic substitution is the major reaction, but yields in general are lower than with the aryl halides. Yet, since many aryl halides are made from the diazonium salt, there are instances in which a one-step reaction is preferable.

Metathesis reactions between palladium(II) salts and various organometallic reagents have been widely used to produce organopalladium complexes for vinylic substitution. Organomercurials have been most extensively used. The reaction occurs under very mild conditions (0–25°) in various solvents such as acetonitrile or methanol, and yields of vinylic substitution products are generally good. (5) Advantages of this method over that employing organic halides are (*a*) stereospecificity is higher because of the lower reaction temperatures, (*b*) methyl, (5) carboalkoxy, (5) neopentyl, (31) and neophyl (31) groups can be added, and (*c*) allyl chloride can be used as the olefin. Also, thermally unstable materials such as substituted pyrimidin-5-yl-carbohydrates (32) and nucleosides (33) can be made by the method. In the allyl chloride reaction elimination of palladium chloride occurs in preference to the hydride so that allyl derivatives are formed catalytically. (34) The turnover

 $RHgX + CH_2 = CHCH_2CI \xrightarrow{PdX_2} RCH_2CH = CH_2 + HgX_2$ 

number of the palladium is only about 5 or 10, however, because some reduction of the palladium occurs in the reaction.

Disadvantages of the mercury reaction include the necessity for a stoichiometric amount of the organometallic reactant, the difficulty of obtaining many desirable mercurials, and the need for stoichiometric amounts of palladium salt for best reaction. The conversions can be made catalytic with cupric chloride as reoxidant for the palladium, but yields usually are lower and the reaction mixtures are difficult to handle because of the slurry of salts present. (5)

Other organometallics that have been used in the metathesis method include organotin, (5) organolead, (5) arylboronic acids, (13) methylcobalt complexes, (35) silanes, (36-39) Reformatsky reagents, (40) thallium alkyls, (41) and Grignard reagents. (42)

Vinylic substitution with organopalladium compounds produced by direct metalation of aromatics has been studied quite extensively. (43) Activated aromatics, including some heterocycles, metalate in an electrophilic fashion at elevated temperatures. The organopalladium compounds formed add to olefins if they are present to form vinylic substitution products. In general, yields are lower by this procedure than with organic halides. There are several serious limitations as well. The reaction is normally stoichiometric in palladium acetate. It can be made catalytic under significant oxygen pressure, but this is neither convenient nor safe. (44) The metalation may give mixtures of isomeric arylpalladium species and subsequently mixtures of vinylic substitution products. Aromatics with electron-withdrawing substituents react either poorly or not at all with palladium acetate. Many olefins are oxidized rapidly by palladium acetate relative to palladation, resulting in low yields. Thus this reaction is useful only in selected instances.

## 5. Experimental Conditions

Most vinylic substitutions have been carried out at 100° in capped bottles. The base has most often been triethylamine used in small to large molar excess over the organic halide. To achieve exclusive monosubstitution of the olefin, the olefin is generally used in small molar excess relative to the organic halide. The rates of the second substitution reaction are usually very much lower than the first, and a large excess of olefin is not necessary. The catalyst used depends on the organic halide. Generally organic iodides need only palladium acetate; bromides require palladium acetate with two or more equivalents of a triarylphosphine or an unhindered secondary amine; and chlorides only react with palladium on charcoal (except for benzyl chloride, which needs only palladium acetate). About one mole percent of palladium is normally used, based on the organic halide, to obtain convenient reaction rates at 100°. Lower amounts are often sufficient at higher reaction temperatures. Temperatures up to *ca.* 160° can be used before the reactions become heterogeneous, and metal is precipitated. (21)

Palladium acetate has usually been the preferred catalyst because of its relatively high solubility in organic compounds. However, other salts such as the chloride also may be used provided that the solutions are stirred to prevent the insoluble catalyst from decomposing to the metal before it dissolves and forms the "active catalyst."

Solvents may be used but often are not necessary. Excess amine is usually seen, as well as acetonitrile, methanol, dimethylformamide, N-methylpyrrolidinone, and hexamethylphosphoramide. Acetonitrile is used frequently when a triarylphosphine is not present, as in reactions of organic iodides. The finely divided palladium metal catalyst in these solutions is precipitated by the amine salt if it is allowed to crystallize from the solution. If acetonitrile is used (or probably the other solvents listed as well except triethylamine), the salt is soluble. When bases other than amines are used, certain solvents may be necessary to dissolve the bases. Sodium carbonate and bicarbonate have been used in dimethylformamide (15) and sodium acetate in methanol, (45) for example.

Reactions may be carried out in open flasks as well as capped tubes or bottles if the reactants are sufficiently high boiling or if a high-boiling solvent is used.

When triarylphosphines are present, it is preferable to carry out the reactions under nitrogen or argon to prevent oxidation of the phosphine.

It appears that the vinylic substitution is quite insensitive to impurities in the

reactants, so highly purified reagents are not necessary. Small amounts of water also do not interfere.

#### 5.1. General Reaction Conditions

Standard conditions for vinylation may be in the following proportions: 10 mmol of an organic halide, 12.5 mmol of an olefin, 12.5 mmol of an amine [more amine is necessary if a free carboxyl group is present (2.5 mmol) or if secondary amines are used and allylic amines are possible products (30 mmol)], 0.10 mmol of palladium acetate, and 0.20 mmol of tri-o-tolylphosphine (or triphenylphosphine). The reactants are combined in a heavy-walled Pyrex tube, and the tube is capped with a self-sealing, rubber-lined cap. The mixture is then warmed in a steam bath slowly with shaking until the palladium acetate completely dissolves and a clear yellow-brown solution is obtained. The tube is then heated in the steam bath until analysis by gas chromatography of a small sample of the reaction mixture (removed by a syringe by puncturing the rubber liner of the cap via a small hole previously cut in the metal cap) shows the absence of organic halide. If triethylamine is used as the base, crystals of triethylamine hydrobromide or hydroiodide normally separate as the reaction proceeds. The products are usually recovered by adding water and filtering insoluble solid products, or by adding ether and water and extracting the product. The product extracts or solid may be washed with aqueous acid to remove excess amine, but this is usually not necessary if the product is to be recrystallized or distilled. The small amounts of palladium metal that may be present are normally easily removed by filtration in the recrystallization or before distillation. Reactants that are not soluble in the usual warm reaction mixture may be dissolved by adding a small amount of either acetonitrile or dimethylformamide. In this case the amine salts usually remain in solution. A nonaqueous work-up may also be used if the products are ether soluble. The cooled reaction mixture is diluted with excess ether, and the insoluble amine salt is removed by filtration and washed with fresh ether. The filtrates can be concentrated, and the crude products remaining can either be recrystallized or distilled directly. If the reactions are very slow at 100°, higher temperatures may be used (up to *ca.* 160°) or more catalyst may be added. If palladium precipitation occurs before an organic bromide completely reacts, adding additional triarylphosphine (initially), especially tri-o-tolylphosphine, up to ca. 6 equivalents per palladium, may keep it in solution. When allylic amines are products, it is advisable to treat the reaction mixtures with aqueous base and extract the products, since it is not always obvious whether the possible amines are present in the free or salt form.

# 6. Experimental Procedures

#### 6.1.1.1. 4-Acetamidostyrene from Ethylene (25)

A mixture of 4.28 g (20 mmol) of 4-bromoacetanilide, 0.045 g (0.2 mmol) of palladium acetate, 0.122 g (0.4 mmol) of tri-o-tolylphosphine, 5 mL of triethylamine, and 10 mL of dimethylformamide was prepared in a 70 mL T-316 stainless-steel Parr bomb. A magnetic stirring bar was added, and the bomb was sealed and flushed with nitrogen and then with ethylene. The bomb was finally pressured to 200 psi with ethylene with stirring and then placed in a 125° oil bath. The mixture was stirred magnetically at 125° for 23 hours. After cooling and venting, the bomb was opened and the contents diluted with 100 mL of water. The solid formed was filtered and crystallized from methanol. The first fraction was (*E*)-1,2-bis(4-acetamidophenyl)ethene, 0.33 g (11%), mp > 300°. Concentration of the methanol gave on cooling 1.88 g (58%) of 4-acetamidostyrene, mp 133–136°, which was raised to 137–138° on sublimation.

In this example dimethylformamide has been used as solvent to dissolve the 4-bromoacetanilide. Only the stilbene derivative is obtained if the bromide is not in solution. A somewhat higher ethylene pressure would probably improve the yield of the styrene derivative in this case. The reaction may be inhibited by high pressure (1000 psi), however. (25)

#### 6.1.1.2. 2-Bromocinnamic Acid from Acrylic Acid (46)

A solution of 2.8 g (10 mmol) of 2-bromoiodobenzene, 0.9 mL (12.5 mmol) of acrylic acid, 0.022 g (0.1 mmol) of palladium acetate, 3.5 mL (25 mmol) of triethylamine, and 4 mL of acetonitrile was heated in a capped bottle at 100° in a steam bath for 1 hour. After the reaction mixture had been cooled, it was diluted with 250 mL of 10% aqueous hydrochloric acid. The solid formed was collected by filtration and recrystallized twice from ethanol (charcoal treatment) to give 1.86 g (82%) of 2-bromocinnamic acid, mp 215–216.5°.

# 6.1.1.3. 2-Carbomethoxymethyl-5-(3′-keto-1′-butyl)thiophene from 3-Buten-2-ol (47)

A mixture of 9.4 g (40 mmol) of 2-carbomethoxymethyl-5-bromothiophene, 30 mL of dimethylformamide, 4.3 g (60 mmol) of 3-buten-2-ol, 0.09 g (0.4 mmol) of palladium acetate, 3.3 g (24 mmol) of potassium carbonate and 0.31 g (1.2 mmol) of triphenylphosphine was heated at 100° for 5 hours. The cooled reaction mixture was diluted with water, and the products were separated by ether extraction. After drying and distillation, bp 155° (2 mm), there was obtained 68% of a mixture consisting of 97% 2-carbomethoxymethyl-5-(3' -keto-1' -butyl)thiophene and 3% of 2-carbomethoxymethyl-5-(2' -keto-3' -butyl)thiophene. Chromatography of the mixture on silica gel with benzene-hexane gave 61% of a pure sample of the major product.

# 6.1.1.4. (E,E)-Dimethyl 2-Methyl-2,4-hexadienedioate from Methyl Acrylate (13)

A solution of 35.8 g (200 mmol) of (*E*)-methyl 3-bromo-2-methylpropenoate, 21.4 g (250 mmol) of methyl acrylate, 25.2 g (250 mmol) of triethylamine, 0.448 g (2.0 mmol) of palladium acetate, and 1.04 g (4.0 mmol) of triphenylphosphine was placed in a 250-mL three-necked flask equipped with a mechanical stirrer and a reflux condenser. The flask was flushed with argon and maintained under an argon atmosphere while the mixture was stirred on the steam bath for 8 hours. The cooled reaction mixture was then diluted with 300 mL of ether and filtered. The solid amine salt was washed thoroughly with another 500 mL of ether. The combined filtrates were concentrated and distilled under reduced pressure. The product, bp 89° (0.65 mm), solidified on cooling and was recrystallized from hexane. There was obtained 22 g (60%) of colorless crystals of (*E*,*E*)-dimethyl 2-methyl-2,4-hexadienedioate, mp  $54.5-55.5^{\circ}$ .

6.1.1.5. (E)-Methyl 3-(9^{$\prime$} -Phenanthryl)acrylate from Methyl Acrylate (21) A mixture of 2.57 g (10 mmol) of 9-bromophenanthrene, 1.1 mL (12.5 mmol) of methyl acrylate, 5 mL of triethylamine, 0.022 g (0.1 mmol) of palladium acetate, and 0.122 g (0.4 mmol) of tri-o-tolylphosphine was prepared in a 22-mL Pyrex tube. The tube was flushed with nitrogen, capped, and heated at 100° for 3.5 hours. After the reaction mixture had been cooled, it was diluted with 200 mL of 10% aqueous hydrochloric acid. The insoluble solid formed was collected by filtration and recrystallized from ethanol with hot filtration through Celite to remove palladium metal. There was obtained 1.89 g (72%) of colorless crystals of product, mp 98–100°. Another recrystallization from ethanol raised the melting point to 100–101°.

#### 6.1.1.6. (E)-4-Cyanostilbene from Styrene (19)

A mixture of 20 mL of dioxane, 4.12 g (30 mmol) of *p*-chlorobenzonitrile, 3.12 g (30 mmol) of styrene, 3.18 g (30 mmol) of sodium carbonate, and 0.5 milliequivalent of palladium as 5% on carbon was heated at 120° for 40 hours at atmospheric pressure. Details of the product isolation were not given, but presumably dilution with water and filtration gave the crude product. A 28% yield was reported.

6.1.1.7. 2-Methyl-6-morpholino-1,4-heptadiene from (*E*)-1,3-Pentadiene (26) In a 200-mL Pyrex bottle was placed 6.05 g (50 mmol) of 2-bromopropene, 4.25 g (62.5 mmol) of (*E*)-1,3-pentadiene, 13.1 mL (150 mmol) of morpholine, 0.112 g (0.50 mmol) of palladium acetate, and 0.30 g (1.0 mmol) of tri-o-tolylphosphine. This bottle was flushed with nitrogen, capped, and heated in a steam bath for 30 hours. After the reaction mixture had been cooled and diluted with excess dilute aqueous sodium hydroxide, the product was extracted with several portions of ether. The dried extracts were concentrated and distilled. There was obtained 5.68 g of product, bp 63–76° (0.5 mm), which contained 89% (55% yield) of 2-methyl-6-morpholino-1,4-heptadiene. Two impurities were present, 4% of 2-methyl-4-morpholino-1,5-heptadiene (probably) and 3% of a morpholine–pentadiene adduct. A pure sample of the major product was obtained by preparative glc.

#### 6.1.1.8. 2,4-Nonadienal from Acrolein Dimethyl Acetal (12a)

A solution of 16.3 g (0.100 mol) of 1-bromo-1-hexene [this product was mainly the (Z) isomer], (48) 12.5 g (0.125 mol) of acrolein dimethyl acetal, 30 mL (0.300 mol) of piperidine, 0.224 g (0.001 mol) of palladium acetate, and 0.610 g (0.002 mol) of tri-o-tolylphosphine was heated in a nitrogen-flushed. capped bottle in a steam bath for 16 hours. On cooling, the partly solid reaction mixture was rinsed into a dropping funnel with the aid of 200 mL of 5% oxalic acid in water. The bottle was rinsed with a little ether, and the rinsings were added to the dropping funnel. The contents of the funnel were then added dropwise to a boiling solution of 3 g of oxalic acid dihydrate in 100 mL of water in a 500-mL, three-necked flask, and the mixture was allowed to distill through a condenser attached to one neck. More water was added as necessary until 400 mL had distilled, after which the product was extracted with ether. The extracts were dried and distilled under reduced pressure to obtain 10.5 g (76%) of 2,4-nonadienal, bp 106-107° (13 mm). The nmr spectrum of the product showed that it contained *ca.* 90% of one isomer, presumably (E, E), and 10% of another  $(E,Z^{?})$  judging by the areas of the aldehyde proton doublets.

# 7. Tabular Survey

The following table includes all significant published examples of the palladium-catalyzed vinylic substitution reaction and some unpublished examples through December 1979. When numerous examples of the same basic reaction were reported, only the best one is given. Side products obtained in less than 5% yield are generally not shown.

Reactions are listed by increasing number of carbon atoms in the olefin. These in turn are subdivided according to the increasing number of carbons in the organic halide with iodides followed by bromides and then chlorides. Yields are based on either isolated products or gas-chromatographic data. The notes^a and^b at the top of each table page are explained on page 388.

Table I. Vinylic Substitution Reactions with Organic Halides

View PDF

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs.
C,	CH2=CH2	C¢H³I	Pd black	KOAc, CH ₃ OH	3 hr, 125°	C ₆ H ₅ CH=CH ₂ (74)	50
	eene-roane	3-HOC ₆ H ₄ 1	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, CH ₃ CN	19 hr, 125°	$3-HOC_6H_4CH=CH_2$ (74)	49
		(Z)- $n$ -C ₄ H ₉ CH=CHI	$[P(C_6H_5)_3]_2Pd(OAc)_2$	$(C_2H_5)_3N$	139 hr, 130°	1,3-Octadiene (14), 24-octadiene (62)	13
		(Z)-n-C ₄ H ₉ CH=CHI	$[P(C_6H_5)_3]_2Pd(OAc)_2$	(C2H3)3N	88 hr, 155°	1,3-Octadiene (6), 2,4-octadiene (68)	13
		2,3-(CH ₃ )(HO)C ₆ H ₃ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, CH ₃ CN	12 hr, 125°	2,3-(CH ₃ )(HO)C ₆ H ₃ CH=CH ₂ (88)	49
		3-CH ₃ CO ₂ C ₆ H ₄ I	Pd(OAc) ₂	(C ₂ H ₃ ) ₃ N, CH ₃ CN	4.3 hr, 125°	3-CH ₃ CO ₂ C ₆ H ₄ CH=CH ₂ (78)	49
		2,4,6-(CH ₃ ) ₃ C ₆ H ₂ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, CH ₁ CN	4 hr, 125°	2,4,6-(CH ₃ ) ₃ C ₆ H ₂ CH=CH ₂ (79)	49
		3-C ₅ H ₄ NBr	$Pd(OAc)_2 + 2 POT$	(C ₂ H ₅ ) ₃ N, CH ₃ CN	66 hr, 125°	3-C ₅ H ₄ NCH=CH ₂ (52)	25
		1,2-C ₆ H ₄ Br ₂	$Pd(OAc)_2 + 2 POT$	(C ₂ H ₅ ) ₃ N, CH ₃ CN	15 hr, 100°	$1,2-C_6H_4(CH=CH_2)_2$ (78). 2-BrC_6H_4CH=CH_2 (12)	25
		2-O ₂ NC ₆ H ₄ Br	Pd(OAc) ₂ + 2 POT	(C ₂ H ₃ ) ₃ N, CH ₃ CN	2 hr, 125°	$2-O_2NC_8H_4CH=CH_2$ (55), (E)-12-O_3NC_4H_4CH=1, (5)	25
		(Z)-n-C ₄ H ₉ CH=CHBr	$[P(C_6H_5)_3]_2Pd(OAc)_2$	(C2H5)3N	38 hr, 130°	1,3-Octadiene (36), 2.4-octadiene (57)	13
		(Z)-n-C ₄ H ₉ CH=CHBr	Pd(OAc) ₂ + 2 POT	Morpholine	2 hr, 100°	(Z)-1,3-Octadiene (5), 2-morpholino-3-octene (84), 4-morpholino-2-octene (11)	10
		(Z)-n-C ₄ H ₉ CH=CHBr	$Pd(OAc)_2 + 2POT$	(C2H2)2NH	20 hr, 100°	(Z)-1,3-Octadiene (5), 2-diethylamino-3-octene (82)	10
		4-HCOC ₆ H₄Br	$[P(C_6H_5)_3]_2Pd(OAc)_2$	(C ₂ H ₅ ) ₃ N, CH ₃ CN	48 hr, 125°	$4 + HCOC_6H_4CH = CH_2$ (53), (E)-I4-HCOC_6H_4CH = 1, (11)	25
		3-HO ₂ CC ₆ H ₄ Br	Pd(OAc) ₂ + 2 POT	(C2H3)3N, CH3CN	4 hr, 100°	$3-HO_2CC_6H_4CH=CH_2$ (51). (E)-[3-HO_2CC_6H_4CH=], (12)	25
		2-H ₂ NC ₆ H ₄ Br	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N, CH ₁ CN	30 hr, 125°	2-H ₂ NC ₆ H ₄ CH=CH ₂ (45)	25
		2-CH ₃ C ₆ H ₄ Br	Pd(OAc) ₂ + 2 POT	(C2H3)3N, CH3CN	18 hr, 125°	2-CH ₃ C ₆ H ₄ CH=CH ₂ (86), (E)-[2-CH ₃ C ₆ H ₄ CH=], (4)	25
		4-CH ₃ CONHC ₆ H ₄ Br	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N, DMF	23 hr, 125°	4-CH ₃ CONHC ₆ H ₄ CH=CH ₂ (59), ( <i>E</i> )-[4-CH ₃ CONHC ₆ H ₄ CH=] ₂ (20)	25

TABLE I. VINYLIC SUBSTITUTION REACTIONS WITH ORGANIC HALIDES

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs
с,	CH ₃ CH=CH ₂	CH ₂ =C(CH ₃ )Br C ₄ H ₄ I	Pd(OAc) ₂ + 2 POT Pd black	Morpholine KOAc, CH ₃ OH	29 hr, 100° 3 hr, 125°	2-Methyl-1-morpholino-2-pentene (46) $C_6H_3C(CH_3)=CH_2$ (27),	51 50
	CH ₁ =CHCN	(Z)-C,H,CHI=CHC,H,	Pd(OAc), + 3 POT	(C,H,),N	22 hr, 100°	C ₆ H ₅ CH=CHCH ₃ (73) (E,Z)-4-Ethyl-2,4-heptadienonitrile (88)	27
		C ₆ H ₄ I	[P(C,H,)],Pd(OAc),	(C,H,),N	4 hr, 81–100°	(Z,Z)-4-Ethyl-2,4-heptadienonitrile (1 (Z)-C ₆ H ₃ CH=CHCN (29),	0) 14
		2-H-NC+H-I	Pd(OAc),	(C.H.),N.	40 hr. 100°	(E)-C ₆ H ₅ CH=CHCN (59) (E)-H ₅ NC ₄ H ₄ CH=CHCN (53)	20
		C ₅ H ₅ FeC ₅ H ₄ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	CH ₃ CN (C ₂ H ₅ ) ₃ N, CH-CN	8 hr, 100°	C _s H _s FeC _s H ₄ CH=CHCN (60)	52
	сн,=снсн,он	3-BrC₅H₄N	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , HMP	9 hr, 95°	СНО (17)	53
	50.5 United 51100	C.H.I	Pd(OAc).	(C.H.).N	0.5 hr. 100°	C.H.CH.CH.CHO (60)	14
		Callal	[P(C ₄ H ₄ ) ₃ ] ₂ Pd(OAc) ₃	CH ₃ CN (C ₁ H ₄ ) ₃ N	5.5 hr. 100°	CH ₃ CH(C ₆ H ₃ )CHO (11) C ₄ H ₂ CH ₂ CH ₂ CH ₂ CHO (56).	14
		С.Н.І	PdBr(C.H.)[P(C.H.)]	(C ₂ H ₄ ) ₂ N	26 hr. 60°	CH ₃ CH(C ₆ H ₅ )CHO (18) C ₄ H ₄ CH ₃ CHO (56)	14
		C.H.J	PdCl	NaHCO, NMP	2 hr. 130°	CH ₃ CH(C ₆ H ₅ )CHO (18) C ₄ H ₄ CH ₂ CH ₂ CHO (23)	54
		C.H.FeC.H.I	$Pd(OAc)_{2} + 2 P(C_{2}H_{2})_{2}$	(C ₂ H ₄ ) ₂ N.	8 hr. 100°	CH ₃ CH(C ₆ H ₅ )CHO (10) C ₄ H ₄ FeC ₄ H ₄ CH ₅ CH ₂ CH ₂ CHO (48)	52
		2-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	CH ₃ CN NaHCO ₃ , Nai, HMPA	5 hr, 105°	2-C ₄ H ₃ SCH ₂ CH ₂ CHO (46), 2-C ₄ H ₃ SCH ₂ CH ₂ CHO (46),	55
		3-C ₄ H ₃ SBr	Pd(OAc) ₂ + 3 P(C ₆ H ₅ ) ₃	NaHCO3, NaI,	19 hr, 90°	2-C ₆ H ₃ ScH ₂ (CH ₃ )cHO (25), 2,2'-bithienyl (8) 3-C ₄ H ₃ SCH ₂ CH ₂ CHO (26),	56
		C ₆ H ₅ Br	PdCl ₂ + 2 P(C ₆ H ₅ ) ₃	NaHCO ₃ , NMP	0.5 hr, 140°	$C_6H_3CH_2CH_2CHO$ (36)	54
	CH2=CHCO2H	2-BrC ₆ H ₄ I	Pd(OAc) ₂	$(C_2H_3)_3N$	l hr, 100°	$(E)-2-BrC_6H_4CH=CHCO_2H (82)$	46
		C ₆ H ₅ Br	Pd(OAc) ₂ + 4 POT	$(C_2H_5)_3N$ ,	4.5 hr, 100°	$(E)-C_6H_3CH=CHCO_2H$ (98)	21
		C ₆ H ₅ Br 2·H ₂ NC ₆ H ₄ Br 2·CH ₃ CONHC ₆ H ₄ Br	$\begin{array}{l} Pd(OAc)_2 + P(C_6H_5)_3^c\\ Pd(OAc)_2 + 6 POT\\ Pd(OAc)_2 + 6 POT \end{array}$	(n-C ₄ H ₉ ) ₃ N (C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N, (C ₂ H ₅ ) ₃ N, CH ₃ CN	2 hr, 150° 12 hr, 100° 70 hr, 100°	$\begin{array}{l} (E)-C_{6}H_{5}CH=CHCO_{2}H  (74) \\ (E)-2-H_{2}NC_{6}H_{4}CH=CHCO_{2}H  (65) \\ (E)-2-CH_{3}CONHC_{6}H_{4}CH=CHCO_{2}H \\ (50) \end{array}$	21 21 49
	CH2=CHCONH2	C ₆ H ₃ Br	$Pd(OAc)_2 + 4 POT$ $Pd(OAc)_2 + ($	(C2H3)3N, CH3CN	l hr, 100°	( <i>E</i> )-C ₆ H₃CH≕CHCONH₂ (70)	21
		2-H ₂ NC ₆ H ₄ Br	6 P - ( )	(C2H3)3N, CH3CN	17 hr, 100°	(E)-2-H ₂ NC ₆ H ₄ CH=CHCONH ₂ (46)	49
		(E)-C ₆ H ₅ CH=CHBr	$Pd(OAc)_2 + 2 POT$	(C ₂ H ₃ ) ₃ N, CH ₃ CN	4.5 hr, 100°	(E,E)-C ₆ H ₅ CH=CHCH=CHCONH ₂ (68)	57
C4	CH2=CHCH=CH2	$CH_2 = C(CH_3)Br$ 3- $C_3H_4NBr$	Pd(OAc) ₂ Pd(OAc) ₂ + 2 POT	Piperidine Morpholine	30 hr, 100° 3 hr, 100°	2-Methyl-6-piperidino-1,4-hexadiene (60) 1-(3'-Pyridyl)-4-morpholino-2-butene	26
	CH3CH=CHCN (Z)-CH3CH=CHCH2OH	(CH ₃ ) ₂ C=CHBr C ₆ H ₅ I	[P(C ₆ H ₅ ) ₃ ] ₂ Pd(OAc) ₂ PdCl ₂	(C2H3)3N NaHCO3, NMP	340 hr, 100° 1 hr, 130°	$(CH_3)_2C = CHC(CH_3) = CHCN$ $CH_3CH(C_6H_5)CH_2CHO$ (69),	13 54
		C ₆ H ₅ Br	$PdCl_2 + 3 P(C_6H_5)_3$	NaHCO3, HMPA	1.5 hr, 140°	$CH_3CH_2CH(C_6H_5)CHO$ (24) $CH_3CH(C_6H_5)CH_2CHO$ (45),	54
	(E)-CH3CH=CHCH2OH	2-C ₄ H ₃ SBr	Pd(OAc) ₂ + 3 P(C ₆ H ₅ ) ₃	NaHCO3, NaI,	9.5 hr, 125°	CH ₃ CH ₂ CH(C ₆ H ₅ )CHO (21) 2-C ₄ H ₃ SCH(CH ₃ )CH ₂ CHO (23).	55
		3-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	HMPA NaHCO ₃ , NaI,	16 hr, 120°	2,2'-bithenyl (52) 3-C ₄ H ₃ SCH(CH ₃ )CH ₂ CHO (23),	56
		C ₆ H ₅ I	Pd(OAc) ₂	HMPA (C ₂ H ₅ ) ₃ N	12 hr, 100°	$3-C_4H_3SCH(C_2H_5)CHO$ (17) CH ₃ CH(C ₆ H ₅ )CH ₂ CHO (62),	14
	CH ₂ =CH(CH ₂ ) ₂ OH	C ₆ H ₅ I	Pd(OAc) ₂	(C2H3)3N, CH3CN	1 hr, 100°	CH ₃ CH ₂ CH(C ₆ H ₃ )CHO (22) C ₆ H ₃ CH=CHCH ₂ CH ₂ OH (21), C ₆ H ₅ CH ₂ CH ₂ CHO (35), CH ₂ =C(C ₆ H ₃ )CH ₂ CH ₂ OH (3),	14
		C ₆ H ₃ I	PdCl ₂	NaHCO ₃ , NMP	2 hr, 130°	$CH_3CH(C_6H_5)CH_2CHO$ (12) $C_6H_5CH_2CH_2CH_2CHO$ (44),	15
	СН2=СНСНОНСН3	2-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3, Nal,	3 hr, 120°	CH ₃ CH(C ₆ H ₅ )CH ₂ CHO (13) 2-C ₄ H ₃ SCH ₂ CH ₂ COCH ₃ (82),	55
		3-BrC ₅ H ₄ N 3-C ₄ H ₃ SBr	$Pd(OAc)_2$ $Pd(OAc)_2 + 3 P(C_bH_3)_3$	HMPA NaHCO3, DMF NaHCO3, Nal,	5 hr, 120° 9 hr, 120°	2-C ₄ H ₃ SCH(CH ₃ )COCH ₃ (5) (3-C ₅ H ₄ N)(CH ₂ ) ₂ COCH ₃ (87) 3-C ₄ H ₃ SCH ₂ CH ₂ COCH ₃ (90).	53 55
		C ₆ H ₅ I	Pd(OAc) ₂	HMPA (C ₂ H ₅ ) ₃ N, CH ₃ CN	5 hr, 100°	3-C4H3SCH(CH3)COCH3 (8) C6H3CH2CH2COCH3 (86), CH3CH(C4H3)COCH3 (9)	14
		C6H3I	[P(C ₆ H ₅ ) ₃ ] ₂ Pd(OAc) ₂	(C2H3)3N	6 hr, 100°	3-OH 3-CO 2-OH 2-CO'	14
		C ₆ H ₅ I	$Pd(OAc)_2 + 8 P(C_6H_5)_3$	(C2H3)3N	14 hr, 50°	3-OH 3-CO 2-OH 2-CO	14
		C ₆ H ₅ I	Pd(OAc) ₂	(C2H3)3N,	10 hr, 80-88°	7 55 4 5 C ₆ H ₅ CH ₂ CH ₂ COCH ₃ (85)	14
		C6H3I 4-HOC6H4I	PdCl ₂ Pd(OAc) ₂	CH ₃ CN NaHCO ₃ , NMP NaHCO ₃ , NMA,	2 hr, 130° 3.5 hr, 120°	C ₆ H ₃ CH ₂ CH ₂ COCH ₃ (89) 4-HOC ₆ H ₄ CH ₃ CH ₅ COCH ₃ (77)	54 15
		4-CH₃OC₀H₄I	Pd(OAc) ₂	(C ₂ H ₃ ) ₃ N (C ₂ H ₃ ) ₃ N, CH ₃ CN	12 hr, 100°	4-CH ₃ OC ₆ H ₄ CH ₂ CH ₂ COCH ₃ (84)	14

TABLE I. VINYLIC SUBSTITUTION REACTIONS WITH ORGANIC HALIDES (Continued)

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs
C4 (Contd.)	СН2=СНСНОНСН3	3-C4H3SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3, Nal	10 hr, 120°	3-C4H3SCH2CH2COCH3 (90),	56
		C ₆ H ₅ Br	$PdCl_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , HMPA	3 hr, 140°	$3-C_4H_3SCH(CH_3)COCH_3$ (8) $C_8H_3CH_2CH_2COCH_3$ (70). $C_8H_8CH=CHCH(OH)CH_3$ (30)	54
		C ₆ H ₅ Br	$[P(C_0H_3)_3]_2Pd(OAc)_2$	(C2H3)3N	35 hr, 100°	$\frac{3.0H}{38}, \frac{3.0O}{48}, \frac{2.0H}{8}, \frac{2.0O}{2}$	14
		C ₆ H ₅ Br	$Pd(OAc)_2 + 4 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	50 hr, 100°	$\frac{3-OH}{45}$ , $\frac{3-CO}{37}$ , $\frac{2-OH}{11}$ , $\frac{2-CO^4}{2}$	14
		C ₆ H ₅ Br	$Pd(OAc)_2 + 18 P(C_6H_5)_3$	(C2H3)3N	144 hr, 100°	$\frac{3-OH}{43}$ , $\frac{3-CO}{19}$ , $\frac{2-OH}{10}$ , $\frac{2-CO'}{2}$	14
		C ₆ H ₅ Br	$PdCl_2[P(C_6H_5)_3]_2$	(C2H3)3N	30 hr, 100°	$\frac{3-OH}{35}$ , $\frac{3-CO}{47}$ , $\frac{2-OH}{8}$ , $\frac{2-CO^4}{2}$	14
		C ₆ H ₃ Br	PdBr ₂ [P(C ₆ H ₅ ) ₃ ] ₂	(C2H5)3N	35 hr, 100"	$\frac{3-OH}{35}$ , $\frac{3-CO}{47}$ , $\frac{2-OH}{8}$ , $\frac{2-CO^4}{2}$	14
		C ₆ H ₃ Br	PdI2[P(C6H5)3]2	(C2H3)3N	40 hr. 100°	3-OH 3-CO 2-OH 2-CO ⁴	14
		4-CF ₃ C ₆ H ₄ Br	[P(C ₆ H ₅ ) ₃ ] ₂ Pd(OAc) ₂	(C2H3)3N	44 hr, 100°	$4-CF_3C_6H_4CH=CHCH(OH)CH_3 (23)$ $4-CF_3C_6H_4CH_2CH_2COCH_3 (64),$ $4-CF_3C_6H_4CH(CH_3)COCH_3 (1),$ $4-CF_4C_4H_4CH(CH_3)COCH_3 (1),$	i), 14 (5)
		4-CH ₃ C ₆ H ₄ Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	48 hr, 100°	$4-CH_{3}C_{6}H_{4}CH=CHCH(OH)CH_{3}$ $(40).$ $4-CH_{3}C_{6}H_{4}CH_{2}CH_{2}COCH_{3}$ $(27).$	14
		2-CH ₃ C ₆ H ₄ Br	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	2 wk. 100°	$4-CH_3C_6H_4C(=CH_2)CH(OH)CH_3$ $2-CH_3C_6H_4CH=CHCH(OH)CH_3$ (64) $2-CH_3C_6H_4CH_2CH_2COCH_3$ (15),	(8)
						2-CH ₃ C ₆ H ₄ C(=CH ₂ )CH(OH)CH ₃	(9)
		4-Bromo-2,6-lutidine	Pd(OAc) ₂	NaHCO ₃ , DMF	30 hr, 120°	(65)	58
		4-CH₁COC ₆ H₄Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	NaHCO3, NMP	2 hr, 130°	4-CH ₃ COC ₆ H ₄ CH ₂ CH ₂ COCH ₃ (35)	15
		Fe(C,H4I)2	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N.	8 hr. 100°	Fe(C ₅ H ₄ CH ₂ CH ₂ COCH ₃ ) ₂ (53)	52
		CsHsFeCsH4I	$Pd(OAc)_2 + 2 P(C_6H_3)_3$	(C ₂ H ₅ ) ₃ , CH ₂ CN	8 hr, 100	C ₅ H ₅ FeC ₅ H ₄ CH ₂ CH ₂ COCH ₃ (57)	52
	$CH_2 = C(CH_3)CH_2OH$	2-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3. Nal. HMPA	8.5 hr, 105	2-C ₄ H ₃ SCH ₂ CH(CH ₃ )CHO (42), 2.2'-bithienyl (31), 2-C ₄ H ₃ SCH=C(CH ₃ )CHO (10)	55
		3-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3. Nal. HMPA	33 hr, 100'	3-C4H3SCH2CH(CH3)CHO (73)	55
		4-O2NC6H4I 4-HOC6H4I C6H3I	PdCl ₂ PdCl ₂ Pd(OAc) ₂	NaHCO ₃ . NMP NaHCO ₃ . NMP (C ₂ H ₅ ) ₃ N.	5.5 hr, 130° 2.5 hr, 130 8 hr, 100°	4-O ₂ NC ₆ H ₄ CH ₂ CH(CH ₃ )CHO (50) 4-HOC ₆ H ₄ CH ₂ CH(CH ₃ )CHO (42) (CH ₃ ) ₂ C(C ₆ H ₃ )CHO (4),	15 15 14
		C ₆ H ₅ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, <i>i</i> -C ₄ H ₆ OH	14 hr. 107-113	C ₆ H ₅ CH ₂ CH(CH ₃ )CHO (61)	14
		C6H51 2-CH3C6H41	Pd(OAc) ₂ PdCl ₂	NaHCO ₃ , NMP NaHCO ₃ , NMP	2 hr, 130 ⁻ 0.7 hr, 140°	C ₆ H ₅ CH ₂ CH(CH ₃ )CHO (95) 2-CH ₃ C ₄ H ₄ CH ₅ CH(CH ₃ )CHO (77)	54 15
		4-CH ₃ OC ₆ H ₄ I 4- <i>t</i> -C ₄ H ₉ C ₆ H ₄ I 2-C ₄ H ₅ Br	$PdCl_2$ $PdCl_2$ $Pd(OAc)_2 + 3 P(C, H_2)_2$	NaHCO ₃ , NMP NaHCO ₃ , NMP NaHCO ₃ , Nal	16.5 hr, 125 6 hr, 130° 16 hr, 120°	4-CH ₃ OC ₆ H ₄ CH ₂ CH(CH ₃ )CHO (61) 4-(-C ₄ H ₉ C ₆ H ₄ CH ₂ CH(CH ₃ )CHO (95) 2-C ₄ H ₅ CH ₅ CH(CH ₄ )CHO (82).	15 15 47
		3-C4H3SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	DMF NaHCO ₃ , Nal,	33 hr, 100°	[2-C ₄ H ₃ S] ₂ (9) 3-C ₄ H ₃ SCH ₂ CH(CH ₃ )CHO (79).	56
		3-C ₅ H ₄ NBr 3-BrC ₅ H ₄ N	$\frac{Pd(OAc)_2 + 2 POT}{Pd(OAc)_2 + 3 P(C_6H_5)_3}$	HMPA (C2H3)3N NaHCO3, HMPA	17 hr, 100 ⁻ 48 hr, 100 ^e	3-C ₄ H ₃ SCH=C(CH ₃ )CHO (11) 3-C ₅ H ₄ NCH ₂ CH(CH ₃ )CHO (64) (3-C ₅ H ₄ N)CH ₂ CH(CH ₃ )CHO (50)	23 53
		2-CH ₃ -5-BrC ₄ H ₂ S	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	or DMF NaHCO ₃ , NaI,	25 hr, 120°	2-CH ₃ C ₄ H ₂ SCH ₂ CH(CH ₃ )CHO-5 (75)	). 47
		C ₆ H ₅ Br 2-CH ₃ O ₂ CCH ₂ -5-BrC ₄ H ₂ S	$Pd(OAc)_2 + 2 P(C_6H_5)_3$ $Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , DMF NaHCO ₃ , Nal,	2 hr, 130° 8.5 hr, 120	C ₆ H ₃ CH ₂ CH(CH ₃ )CHO (100)	54
			BUOLD I DEC UN	HMPA	2-CH ₃ O 2-	b2CCH2C4H2SCH2CH(CH3)CHO-5 (44), CH3O2CCH2C4H2SC(CH3)2CHO-5 (6), 2-CH3O2CCH2C4H3S (24)	. 47
		2*CH3Q2C+3+BIC4H23	$Fu(VAC)_2 + 3 P(C_6 H_5)_3$	Nal	2-CH3C	02CCH2C4H2SCH2CH(CH3)CHO-5 (61), 2-CH3O2CCH2C6H4SC(CH3)2CHO-5 (3),	47
		2-CH ₁ CO-5-BrC ₄ H ₁ S	$Pd(OAc)_3 + 3P(C_2H_3)_3$	NaHCO ₃ , NaI,	5 hr, 120°	2-CH ₃ O ₂ CCH ₂ C ₄ H ₃ S (7) 2-CH ₃ COC ₄ H ₃ SCH ₃ (CH ₃ )CHO ₅ (80)	47
		2-CH ₃ O ₂ C-5-BrC ₄ H ₂ S	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	HMPA NaHCO ₃ , NaI,	9 hr, 120°	2-CH ₃ O ₂ CC ₄ H ₂ SCH ₂ CH(CH ₃ )CHO-5	10 1012
		4-NCC ₆ H₄Br 4-OHCC ₆ H₄Br	$PdCl_2 + 2 P(C_6H_5)_3$ $PdCl_2 + 2 P(C_6H_5)_3$	HMPA NaHCO3, NMP NaHCO3, NMP	4 hr, 130° 7 hr, 130°	(60) 4-NCC ₆ H ₄ CH ₂ CH(CH ₃ )CHO (52) 4-OCHC ₆ H ₄ CH ₂ CH(CH ₃ )CHO (57)	47 15 15

TABLE I	VINVLIC SUBSTITUTION REACTIONS WITH ORGANIC HALIDES	(Continued)
TADLE I.	VINTER SUBSTITUTION REACTIONS WITH ORGANIC HALIDES	(commune)

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs
						СНО	
C ₄ (Contd.)	CH ₂ =C(CH ₃ )CH ₂ OH	4-Bromo-2,6-lutidine	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , DMF	48 hr, 100°	(95)	58
19 B		4-CH ₃ COC ₆ H ₄ Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	NaHCO ₃ , NMP	2 hr, 130°	4-CH3COC6H4CH2CH(CH3)CHO	
		3,4-CH ₂ O ₂ C ₆ H ₃ Br	PdCl ₂ + 2 P(C ₆ H ₅ ) ₃	( <i>n</i> -C ₃ H ₇ ) ₃ N,	4 hr, 135°	3,4-CH ₂ O ₂ C ₆ H ₃ CH ₂ CH(CH ₃ )CHO	15
		4-C ₂ H ₅ O ₂ CC ₆ H ₄ Br 4-i-C ₃ H ₇ C ₆ H ₄ Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$ $Pd(OAc)_2$	NaHCO ₃ , HMPA NaHCO ₃ , Nal, HMPA	0.7 hr, 130° 4 10 hr, 110	(52) 4-C2H3O2CC6H4CH2CH(CH3)CHO 4-i-C3H7C6H4CH2CH(CH3)CHO (72)	15 15 15
		4-t-C4H9C6H4Br	Pd(OAc) ₂	NaHCO ₃ , NaI,	4 hr, 110°	4-1-C ₄ H ₉ C ₆ H ₄ CH ₂ CH(CH ₃ )CHO (82)	15
	CH ₂ =CHOC ₂ H ₃	C ₆ H ₅ I	$Pd(OAc)_2[P(C_6H_5)_3]_2$	(C ₂ H ₅ ) ₃ N	3 hr, 100°	$C_6H_5C(OC_2H_5)=CH_2$ (11). (Z)- $C_2H_5OCH=CHC_6H_5$ (20)	59
	CH ₂ =CHCOCH ₃	Fe(C ₅ H ₄ I) ₂	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N.	8 hr, 100	$Fe(C_3H_4CH=CHCOCH_3)_2$ (76)	52
		C ₅ H ₅ FeC ₅ H ₄ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N, CH ₃ CN	8 hr, 100°	C ₅ H ₃ FeC ₅ H ₄ CH=CHCOCH ₃ (52)	52
	CH CHCO CH	CH - CH			22 L 1000	CO ₂ CH ₃	
	Cn ₂ —CnCO ₂ Cn ₃	CH2=CH1	$Pa(OAC)_2 + 3 P(C_6H_3)_3$	(C ₂ H ₅ ) ₃ N	32 hr, 100°	CO ₂ CH ₃ (52)	13
		(Z)-C ₂ H ₅ CHI=CHC ₂ H ₅	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N	4 hr, 100°	Methyl (E.Z.) A sthul 2.4 hentediencete (86)	37
		(E)-C ₂ H ₅ CHI=CHC ₂ H ₅	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N	4 hr, 100°	(E,Z)-4-ethyl-2,4-heptadienoate (80) Methyl (E,E)-4-ethyl-2,4-heptadienoate (80)	27
		4-BrC ₆ H ₄ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, CH ₃ CN	5.5 hr, 100°	$(E)-4-BrC_{6}H_{4}CH=CHCO_{2}CH_{3} $ (68)	46
		Շ ₆ Н₃I Շ.Н₊I	Pd(OAc) ₂ Pd(OAc)	(n-C4H9)3N (C.H.).N	l hr, 100 21 hr, 100	$(E)-C_8H_5CH=CHCO_2CH_3$ (81) $(C,H_2)-C=CHCO_2CH_3$ (70)	7
		C.H.J	Pd black	CH ₃ CN KOAc CH ₂ OH	3 hr. 125°	(E)-C.H.CH=CHCO.CH. (97)	50
		C ₆ H ₅ I 2-HOC ₆ H ₄ I	5% Pd/C Pd(OAc) ₂ + 6 P(C ₆ H ₅ ) ₃	Na ₂ CO ₃ , CH ₃ OH (C ₂ H ₅ ) ₃ N, CH ₃ CN	4 hr, 150° 9 hr, 100°	$(E)-C_{6}H_{5}CH=CHCO_{2}CH_{3}  (70)$ $(E)-2-HOC_{6}H_{4}CH=CHCO_{2}CH_{3}  (83)$	60 21
		3-HOC ₆ H₄I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, CH ₃ CN	5 hr, 100°	(E)-3-HOC ₆ H ₄ CH=CHCO ₂ CH ₃ (95)	21
		2-H ₂ NC ₆ H ₄ I 1.2,4-H ₂ NC ₆ H ₃ (1)Br	Pd(OAc) ₂ Pd(OAc) ₂	(C2H3)3N (C2H3)3N. CH3CN	80 hr, 100 24 hr, 100	$(E)-2-H_2NC_6H_4CH = CHCO_2H (72)$ $(E)-2-H_2N-5-BrC_6H_3CH = CHCO_2CH_3 (33)$	20 46
		(E)-n-C4H9CH=CHI	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	38 hr, 100° (E,E)-CH ₃	(CH ₂ ) ₃ CH=CHCH=CHCO ₂ CH ₃ (45),	13
		(Z)-n-C₄H₀CH=CHI	$Pd(OAc)_2 + 2 P(C_6H_3)_3$	(C ₂ H ₅ ) ₃ N	( <i>E</i> , <i>Z</i> )-CF 15 hr, 100 [±]	$H_3(CH_2)_3CH=CHCH=CHCO_2CH_3$ (8) $n-C_4H_9CH=CHCH=CHCO_2CH_3$ ( <i>E.E</i> ) (51); ( <i>E.Z</i> ) (30)	13 13
		4-CH ₃ OC ₆ H ₄ I 2,4-(C ₆ H ₅ CO ₂ ) ₂ C ₆ H ₃ I	Pd(OAc) ₂ Pd(OAc) ₂	$(n-C_4H_0)_3N$ $(C_2H_5)_3N$ , $CH_3CN$	5 hr. 100° 32 hr, 100° (E)-2,4-(	$(E) + 4 - CH_3OC_6H_4CH = CHCO_2CH_3 (68)$ $(C_6H_5CO_2)_2C_6H_3CH = CHCO_2CH_3 (35)$	) 7 20
		CH ₃ CBr=CH ₂	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	36 hr, 100°	(63)	13
		(CH ₃ ) ₂ C=CHBr ( <i>E</i> )-CH ₃ O ₂ C(CH ₃ )C=CHBr	$Pd(OAc)_2 + 2 P(C_6H_5)_3$ $Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N	70 hr, 100° ( <i>1</i> 6 hr, 100° ( <i>E,E</i> )	$CO_2CH_3$ $E \to CH_3)_2C = CHCH = CHCO_2CH_3$ (75) $CH_3O_2CC(CH_3) = CHCH = CHCO_2CH_3$	6
		(E + Z)-C ₂ H ₅ C(CH ₃ )=CHBr	Pd(OAc) ₂ + 3 POT	(C2H3)3N	24 hr, 125°	Methyl 5-methyl-2,4-octadienoate (two	27
		4-ClC ₆ H₄Br 4-ClC ₆ H₄Br 2-H₂NC ₆ H₄Br	$\begin{array}{c} Pd(OAc)_2 + 2 \text{ POT} \\ Pd(OAc)_2 \\ Pd(OAc)_2 + \\ 6P - \end{array}$	(C ₂ H ₃ ) ₃ N (n-C ₄ H ₉ ) ₃ N (C ₂ H ₃ ) ₃ N, CH ₃ CN	18 hr, 100° 12 hr, 100° 4.5 hr, 100°	$\begin{array}{l} \text{Isources} & (C) \\ (E) + C: C_{c}, H_{4}CH = CHCO_{2}CH_{3} & (93) \\ (E) - 4 - CiC_{6}H_{4}CH = CHCO_{2}CH_{3} & (54) \\ (E) - 2 - H_{2}NC_{6}H_{4}CH = CHCO_{2}CH_{3} & (88) \end{array}$	61 6 49
		4-H2NC6H4Br 2-O2NC6H4Br	$\frac{1}{\sqrt{3}}$ Pd(OAc) ₂ + 8 POT Pd(OAc) ₂ + 2 POT	(C ₂ H ₃ ) ₃ N (C ₂ H ₅ ) ₃ N	2 hr, 100° 23 hr, 100°	(E)-H ₂ NC ₆ H ₄ CH=CHCO ₂ CH ₃ (73) (E)-2-O ₂ NC ₆ H ₄ CH=CHCO ₂ CH ₃	20 13
		4-O ₂ NC ₆ H ₄ Br 2-HOC ₆ H ₄ Br 3-HOC ₆ H ₄ Br 4-HOC ₆ H ₄ Br C ₆ H ₅ Br	$\begin{array}{l} Pd(OAc)_2 + 2 \ P(C_6H_3)_3 \\ Pd(OAc)_2 + 6 \ POT \\ Pd(OAc)_2 + 6 \ P(C_6H_5)_3 \\ Pd(OAc)_2 + 2 \ POT \\ Pd(OAc)_2 + 2 \ P(C_6H_5)_3 \end{array}$	(n-C ₄ H ₉ ) ₃ N (C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N TMED	7 hr, 100° 28 hr, 100° 7 hr, 100° 22 hr, 75° 28 hr, 125°		6 20 20 20 6

## TABLE I. VINYLIC SUBSTITUTION REACTIONS WITH ORGANIC HALIDES (Continued)
No.				D		Destau() and	
of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Yield(s) (%)	Refs.
C ₄ (Contd.)	CH ₂ =CHCO ₂ CH ₃	C₀H₅Br C₀H₃Br (Z)-я-C₄H₅CH=CHBr	$Pd(OAc)_2 + 4 POT$ $Pd(OAc)_2[P(C_6H_5)_3]_2$ $Pd(OAc)_2 + 8 P(C_6H_5)_3$	(C2H3)3N (C2H3)3N (C2H3)3N	43 hr, 100° 68 hr, 87–97° 19 hr, 100°	$(C_6H_5)_2C = CHCO_2CH_3$ (78) ( <i>E</i> )-CH_3O_2CCH=CHC_6H_5 (88) <i>m</i> -C_4H_9CH=CHCH=CHCO_2CH_3	21 14 13
		4-NCC ₆ H₄Br 2-OCHC ₆ H₄Br	$Pd(OAc)_2 + 4 POT$ $Pd(OAc)_2 + 4 POT$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N,	2 hr, 100° 5.5 hr, 100°	(E,E) (10); (E,Z) (82) (E)-4-NCC ₆ H ₄ CH=CHCO ₂ CH ₃ (70) (E)-2-OCHC ₆ H ₄ CH=CHCO ₂ CH ₃ (70)	21 49
		4-OHCC ₆ H ₄ Br	Pd(OAc) ₂ + 4 POT	$(C_2H_5)_3N$	18 hr, 100°	$(E)-4-OHCC_6H_4CH=CHCO_2CH_3$	21
		3-HO ₂ CC ₆ H ₄ Br	Pd(OAc) ₂ + 4 POT	(C2H3)3N	5.5 hr, 100°	$(E)-3-HO_2CC_6H_4CH=CHCO_2CH_3$	21
		4-CH ₃ OC ₆ H ₄ Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	TMED	36 hr, 135°	(67) (E)-4-CH ₃ OC ₆ H ₄ CH=CHCO ₂ CH ₃ (54)	6
		2-HOCH ₂ C ₆ H ₄ Br	Pd(OAc) ₂ + 2 POT	$(C_2H_5)_3N$	72 hr, 100°	(68)	21
		4-CH ₃ SC ₆ H ₄ Br	Pd(OAc) ₂ + 4 POT	(C2H3)3N	72 hr. 125°	ĊH ₂ CO ₂ CH ₃ ( <i>E</i> )-CH ₃ O ₂ CCH=CHC ₆ H ₄ SCH ₃ -4 Н (77)	21
		5-Bromoindole	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N	120 hr, 100°	(53)	23
		(E)-C ₆ H ₅ CH=CHBr	Pd(OAc) ₂	(n-C4H9)3N	72 hr, 100°	(E,E)-C ₆ H ₅ CH=CHCH=CHCO ₂ CH ₃	7
		2-CH ₃ COC ₆ H ₄ Br	Pd(OAc) ₂ + 4 POT	(C2H5)3N	17 hr, 100°	(E)-2-CH ₃ COC ₆ H ₄ CH=CHCO ₂ CH ₃	49
		4-CH ₃ CONHC ₆ H ₄ Br	$Pd(OAc)_2 + 4 POT$	(C2H3)3N	3 hr, 100 ^e	(E)-4-CH ₃ CONHC ₆ H ₄ CH=CHCO ₂ CH	3 20
		2-CH ₃ CO ₂ C ₆ H ₄ Br	Pd(OAc) ₂ + 8 POT	(C2H3)3N	18 hr, 100	$(E)-2-CH_3CO_2C_6H_4CH=CHCO_2CH_3$	20
		2-CH ₃ O ₂ CC ₆ H ₄ Br	Pd(OAc) ₂ + 4 POT	(C2H3)3N	3 hr, 100°	$(E)-2-CH_3O_2CC_6H_4CH=CHCO_2CH_3$	21
		4-CH ₃ O ₂ CC ₆ H ₄ Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(n-C4Ho)3N	37 hr. 100°	$(E)-4-CH_3O_2CC_6H_4CH=CHCO_2CH_3$	6
		4-(CH ₃ ) ₂ NC ₆ H ₄ Br	Pd(OAc) ₂ + 8 POT	(C2H3)3N	24 hr, 100°	$(E)-4-(CH_3)_2NC_6H_4CH=CHCO_2CH_3$ (80)	62
		2,4-(CH ₃ O) ₂ C ₆ H ₃ Br 3-Bromoquinoline	$Pd(OAc)_2 + 6 POT$ $Pd(OAc)_2 + 4 POT$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N	41 hr, 100° 6 hr, 100°	$(E)-2,4+(CH_3O)_2C_6H_3CH=CHCO_2CH_3$ (13) (13) (13) (13) (13) (13) (13) (13)	3 20 23
		4-Bromoisoquinoline 1-C ₁₀ H ₇ Br	$Pd(OAc)_2 + 4 POT$ [ $P(C_6H_3)_3$ ] ₂ $Pd(OAc)_2$	(C2H3)3N (C2H3)3N	40 hr, 100° 120 hr, 96-106°	(E)-1-C ₁₀ H ₂ CH=CHCO ₂ CH ₃ (62)	23 14
		N-Acetyl-3-bromoindole	Pd(OAc) ₂ + 2 POT	(C2H3)3N	6 hr, 100°	(50)	23
		2.4-(CH,CO,),C,H,Br	Pd(OAc), + 8 POT	(C,H,),N	4 hr, 100°	CO3CH3	
		2.5-(CH-CO-)-C-H-Br	$Pd(OAc)_{2} + 6 POT$	(C ₁ H ₄ ) ₁ N	(E)-2,4 24 hr	$-(CH_3CO_2)_2C_6H_3CH=CHCO_2CH_3$ (26)	) 20
		34(CH.CO.) C.H.Br	Pd(OAc). + 6 POT	(C.H.).N	( <i>E</i> )-2,	$5-(CH_3CO_2)_2C_6H_3CH=CHCO_2CH_3$ (3)	) 20
		2-C. H. C. H. Br	Pd(OAc)	TMED	(E)-3,4	$H(CH_{3}CO_{2})_{2}C_{6}H_{3}CH = CHCO_{2}CH_{3}  (47)$	) 20
		2 SIGN CHICH B	Pd(OAc) + AP(CH)	(CH) N	20 hr 125°	(37)	
		9-Bromophenanthrene	$Pd(OAc)_2 + 4 POT$	(C ₂ H ₅ ) ₃ N	(E)-2,5-[ 3.5 hr, 100°	$(CH_3)_2CH]_2C_8H_3CH=CHCO_2CH_3$ (79) ( <i>E</i> )-9-C ₁₄ H ₉ (CH=CHCO_2CH_3) (72)	) 21 21
		C ₆ H ₃ CH ₂ Cl C ₆ H ₃ CH ₂ Cl	5% Pd/C Pd(OAc)₂	$Na_2CO_3$ . CH ₃ OH ( <i>n</i> -C ₄ H ₉ ) ₃ N	4 hr, 150° 15 hr, 100°	$(E)-C_6H_5CH_2CH=CHCO_2CH_3 (8)$ $(E)-C_6H_5CH=CHCH_2CO_2CH_3 (67).$ $(E)-C_4H_5CH=CHCO_5CH_3 (9)$	19 7
	CH2=CHO2CCH3	C ₆ H ₅ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	$(C_2H_5)_3N$	8 hr, 100°	(E)-C ₆ H ₅ CH=CHC ₆ H ₅ (52), (E)-C ₆ H ₅ CH=CHOAc (10)	63
		C ₆ H₅I	[P(C ₆ H ₅ ) ₃ ] ₂ Pd(OAc) ₂	(C2H3)3N	3 hr, 130°	$C_{6}H_{3}CH=CH_{2}$ (14), $C_{6}H_{3}CH=CHOAc$ (12), (E)- $C_{6}H_{3}CH=CHC_{6}H_{3}$ (18), (Z)- $C_{6}H_{3}CH=CHC_{6}H_{3}$ (3)	59
		C ₅ H ₅ FeC ₅ H ₄ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N, CH ₃ CN	8 hr, 100°	$C_5H_5FeC_5H_4CH=CHC_5H_4FeC_5H_5$ (38)	52
	(E)-CH ₃ CH=CHCO ₂ H CH ₂ =C(CH ₃ )CO ₂ H	С ₆ Н ₃ Вг С ₆ Н ₃ Вг С ₆ Н ₃ Вг	$Pd(OAc)_2 + 20 P(C_6H_5)_3$ $Pd(OAc)_2 + 4 POT$ $Pd(OAc)_2 + 2 P(C_6H_5)_3$	(n-C4H9)3N (C2H3)3N (n-C4H9)3N	12 hr, 125° 24 hr, 100° 24 hr, 125°	$\begin{array}{ll} (E) - C_6 H_5 C(CH_3) = CHCO_2 H & (60) \\ (E) - C_6 H_5 C(CH_3) = CHCO_2 H & (75) \\ (E) - C_6 H_5 CH = C(CH_3) CO_2 H & (65) \end{array}$	21 49 21

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄	(E)-HOCH2CH=CHCH2OH	C ₆ H ₅ I	PdCl ₂	NaHCO ₃ , NMP	0.5 hr, 130°	C ₆ H ₅ -(95)	54
(contac)		C ₆ H ₅ Br	$PdCl_2 + 3 P(C_6H_5)_3$	NaHCO3, HMPA	2 hr, 140°	C ₆ H ₅ -(100)	54
с,	(E)-CH ₂ =CHCH=CHCH ₃	CH ₂ =CHBr CH ₂ =C(CH ₃ )Br	$Pd(OAc)_2 + 2 POT$ $Pd(OAc)_2 + 2 POT$	Morpholine Morpholine	17 hr, 100° 30 hr, 100°	6-Morpholino-1,4-heptadiene (18) 2-Methyl-6-morpholino-1,4-heptadiene	26 26
		(Z)-C ₂ H ₅ CHI=CHC ₂ H ₅	Pd(OAc) ₂ + 2 POT	Morpholine	13 hr, 100°	(55) Undecatrienes (9), 4-ethyl-8-morphilino-3,6-nonadiene (63)	26
		C ₆ H ₃ Br	Pd(OAc) ₂	Piperidine	22 hr, 100°	(E,E)-C ₆ H ₅ CH=CHCH=CHCH ₃ (49), (49), (49),	51
		4-CH ₃ OC ₆ H ₄ Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	Morpholine	8 hr, 100° ( <i>E</i> , <i>E</i> )-4	$CH_3OC_6H_4CH=CHCH=CHCH_3$ (57), Locanizel 4 morpholico 3 more (12)	17
	CH ₂ =C(CH ₃ )CH=CH ₂	(Z)-CH ₃ CH=CHBr	Pd(OAc) ₂ + 2 POT	Morpholine	5 d, 100°	2-Methyl-1-morpholino-2,5-heptadiene	26
		CH ₂ =C(CH ₃ )Br	Pd(OAc) ₂ + 2 POT	Morpholine	45 hr, 100°	2,5-Dimethyl-1-morpholino-	26
		(CH ₃ ) ₂ C=CHBr	Pd(OAc) ₂ + 2 POT	Morpholine	4 d. 100°	<ul> <li>2,5-neptaolene (40)</li> <li>2,6-Dimethyl-1,3,5-heptatriene (12),</li> <li>2,6-dimethyl-1-morpholino-2,5- heptadiene (54),</li> <li>2,6-dimethyl-3-morpholino-1,5- heptadiene (8)</li> </ul>	26
		C6H31 C6H31	$\begin{array}{l} Pd(OAc)_2 + 2 P(C_6H_3)_3 \\ Pd(OAc)_2 + 2 POT \end{array}$	(C2H3)3N Piperidine	18 hr, 100° 13 hr, 100° (E)-C	$(E)-C_6H_5CH=CHC(CH_3)=CH_2  (52)$ $(E)-C_6H_5CH=CHC(CH_3)=CH_2  (22),$ $(E)-C_6H_5CH=CHC(CH_3)=CH_2  (59)$	17 51
			Pd(OAc) ₂	Piperidine	51 hr, 100°	$(E)-C_6H_5CH=CHC(CH_3)=CH_2$ (54), CH_CH_CH=C(CH_3CH_NCH_NCH_(54))	51
		C ₆ H ₅ Br	Pd(OAc) ₂ + 2 POT	Piperidine	48 hr, 100°	(E)-C ₆ H ₃ CH=C(CH ₃ )CH ₂ HC ₃ H ₁₀ (57) (E)-C ₆ H ₃ CH=CHC(CH ₃ )=CH ₂ (35), C H CH CH=C(CH )CH NC H (57)	17
	CH ₂ =CH(CH ₂ ) ₃ OH	C ₆ H ₅ I	PdCl ₂	NaHCO3, NMP	2 hr, 100°	$C_6H_3CH(C_6H_3)(CH_2)_4CHO$ (30), CH_3CH(C_6H_3)(CH_2)_4CHO (12)	15
	Сн ₂ =Снсн ₂ снонсн ₃	2-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3, Nal, NMP	5 hr, 120°	2-C ₄ H ₃ SCH(CH ₃ )CH ₂ COCH ₃ (55), 2-C ₄ H ₃ SCH(C ₂ H ₃ )COCH ₃ (14), 2-C ₄ H ₃ SCH=CHCH ₂ CHOHCH ₃ (20),	55
		C ₆ H ₅ I	$Pd(OAc)_2 + CH_3CN$	(C ₂ H ₅ ) ₃ N	6.5 hr, 100°	$C_6H_5CH=CHCH_2CHOHCH_3$ (38), $C_6H_5CH=CH_2CH_2CHOHCH_3$ (38), $C_6H_5CH_2CH_2CH_2COCH_3$ (42), $CH_2=C(C_6H_3)CH_2CHOHCH_3$ (7),	14
		C ₆ H ₅ Br	$[P(C_6H_5)_3]_2Pd(OAc)_2$	(C ₂ H ₅ ) ₃ N	24 hr, 100°	$CH_3CH(C_6H_3)CH_2COCH_3$ (9) $C_6H_3CH=CHCH_2CHOHCH_3$ (58), $C_6H_3CH_2CH_2CH_2COCH_3$ (6), $CH_2=C(C_6H_3)CH_2CHOACH_3$ (13),	14
		2-CH ₃ O ₂ CC ₄ H ₂ SBr-5	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	NaHCO ₃ , Nal, HMPA	- 2-C	$CH_3CH_1(C_6H_3)CH_2COCH_3$ (1) 2- $CH_3O_2CC_4H_2S(CH_2)_3COCH_3-5$ (28), $H_3O_2CC_4H_2SCH=CHCH_2CHOHCH_3-5$ (22)	47
	C2H3CHOHCH=CH2	2-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , Nal,	2.5 hr, 120°	2-C4H3SCH2CH2COC2H3 (85),	55
		3-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3. Nal. HMPA	16 hr. 120"	$2-C_4H_3SCH_2CH_2COC_2H_5$ (80), $3-C_4H_3SCH_2CH_2COC_2H_5$ (80), $3-C_4H_3SCH(CH_3)COC_2H_5$ (6), $(2-C_4H_3)CH(CH_3)COC_2H_5$ (6),	56
	CH2=C(CH3)(CH2)2OH	C ₆ H ₅ I	PdCl ₂	NaHCO ₃ , NMP	7 hr, 130°	$C_6H_3CH_2CH(CH_3)CH_2CHO$ (45),	15
	(Е)-СН ₃ СН=СНСНОНСН ₃	C ₆ H ₅ I C ₆ H ₅ I	$PdCl_2 + 2 P(C_6H_5)_3$ $PdCl_2$	NaHCO ₃ , NMP NaHCO ₃ , NMP	3 hr, 130° 20 hr, 130°	$C_6H_5D_2$ (10) $C_6H_5CH_2CH(CH_3)CH_2CHO$ (50) $CH_3CH(C_6H_4)CH_2CHOHCH_3$ (50) O	15 54
		3-BrC₅H₄N	Pd(OAc) ₂	NaHCO3, DMF	24 hr, 120°	(71), 0 (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (71), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (7), (	53
		2-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3, Nal,	2.5 hr, 120°	2-C4H3SCH(CH3)CH2COCH3 (54),	55
		3-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	HMPA NaHCO3, Nal, HMPA	10 hr, 120°	2,2'-bithienyl (20) $3-C_4H_3SCH(CH_3)CH_2COCH_3$ (62), $3-C_4H_3SCH(C_2H_3)COCH_3$ (16)	56

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs.
						$\gamma\gamma$	
c,	(E)-CH3CH=CHCHOHCH3	4-Bromo-2,6-lutidine	$Pd(OAc)_2 + 3P(C_6H_5)_3$	NaHCO3, DMF	20 hr, 120°	(62)	58
(Contd.)	CH ₂ =CHCHOHC ₂ F ₄	C ₆ H ₃ I	Pd(OAc) ₂	(C2H3)3N.	20 hr, 80 ^c	C ₆ H ₃ CH ₂ CH ₂ COC ₂ F ₃ (57),	64
	(CH ₃ ) ₂ C=CHCH ₂ OH	C ₆ H ₅ I	Pd(OAc) ₂	CH3CN (C2H3)3N	12 hr, 100°	$C_6H_5CH=CHCH(OH)C_2F_5$ (29) $C_6H_5(CH_3)_2CCH_2CHO$ (13), $(CH_3)_2C=C(C_6H_3)CH_2OH$ (9), $(CH_3)_3CH=CH(C_2H_3)CHO$ (1),	14
		C ₆ H ₃ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N	96 hr, 100°	$(C_6H_3)_2$ (2) $C_6H_3(CH_3)_2CCH_2CHO$ (32), $(CH_3)_2C=C(C_6H_3)CH_2OH$ (10), $(CH_3)_2CHCH(C_6H_3)CHO$ (2),	14
		C ₆ H ₃ I	Pd(OAc) ₂	(C2H3)3N, CH3CN	12 hr, 100°	$(C_6H_5)_2$ (3) $C_6H_5(CH_3)_2CCH_2CHO$ (7), $(CH_3)_2C=C(C_6H_5)CH_2OH$ (13), $(CH_3)_2CHCH(C_6H_5)CHO$ (3).	14
		C ₆ H ₃ I	PdCl ₂	NaHCO3, NMP	10 hr, 130	$(C_6H_5)_2$ (21) $C_6H_5(CH_3)_2CCH_2CHO$ (36),	54
		C ₆ H ₃ Br	$PdCl_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , HMPA	4 hr, 140°	(CH ₃ ) ₂ CHCH(C ₆ H ₃ )CHO (16) C ₆ H ₃ (CH ₃ ) ₂ CCH ₂ CHO (27), (CH ₃ ) ₂ CHCH(C ₆ H ₃ )CHO (19),	54
	CH ₂ =CHC(OH)(CH ₃ ) ₂	(CH ₃ ) ₂ C=CHBr	Pd(OAc) ₂ +	(C2H3)3N	72 hr, 100°	$(CH_3)_2C = CHCH = CHCOH(CH_3)_2$	65
					CH; () CH	( ^{00),} ₂ =С(СН ₃ )CH=CHCH ₂ COH(CH ₃ ) ₂ (4), CH ₃ ) ₂ C=CHC(=CH ₂ )COH(CH ₃ ) ₂ (10), I ₂ =C(CH ₃ )CH=C(CH ₃ )COH(CH ₃ ) ₂ (2)	;
		C ₆ H ₅ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, CH ₃ CN	5 hr, 100°	$C_6H_5CH=CHCOH(CH_3)_2$ (8), $C_6H_5C(=CH_2)COH(CH_3)_2$ (1),	14
		C ₆ H ₃ I	$[P(C_6H_5)_3]_2Pd(OAc)_2$	(C ₂ H ₅ ) ₃ N	4 hr, 100°	$C_{6}H_{3}CH=CHC(CH_{3})=CH_{2}$ (91) $C_{6}H_{3}CH=CHCOH(CH_{3})_{2}$ (97), $C_{6}H_{3}CH=CHC(CH_{3})=CH_{2}$ (1)	14
		C ₆ H ₃ I C ₆ H ₃ Br	[P(C ₆ H ₃ ) ₃ ] ₂ Pd(OAc) ₂ PdCl ₂ + 3 P(C ₆ H ₃ ) ₃	(C2H3)3N NaHCO3, HMPA	6 hr, 96-105° 4 hr, 140°	C ₄ H ₃ CH=CHCOH(CH ₃ ) ₂ (88) C ₆ H ₃ CH=CHCOH(CH ₃ ) ₂ (65)	14 54
		4-CH3C6H4Br 4-CH3OC6H4Br	$Pd(OAc)_2 + 2P(C_6H_5)_3$ $Pd(OAc)_2 + 2P(C_6H_5)_3$	$(C_8H_{17})_3N, DMF,$ NaHCO ₃ $(i-C_3H_7)_2(C_2H_3)N,$	3 hr, 120° 3.5 hr, 130°	$4-CH_3C_6H_4CH = CHCOH(CH_3)_2  (80)$ $4-CH_3OC_6H_4CH = CHCOH(CH_3)_2$	15
		4-CH ₃ COC ₆ H ₄ Br	Pd(OAc) ₂ + 2 P(C ₆ H ₃ ) ₃	HMPA, NaHCO ₃ ( <i>n</i> -C ₁₂ H ₂₅ ) ₃ N,	2.5 hr, 110°	(59) 4-CH3COC6H4CH=CHCOH(CH3)2	15
	Dihydropyran	C ₆ H₃I	[P(C ₆ H ₅ ) ₃ ] ₂ Pd(OAc) ₂	NMP, NaHCO ₃ (C ₂ H ₅ ) ₃ N	3 hr, 100°	(67)	59
					207-202120	└── <b>(</b> с"н,	9229
	$CH_2 = CHCO_2C_2H_5$	$Fe(C_3H_4I)_2$	$Pd(OAc)_2 + 2P(C_6H_5)_3$	(C ₂ H ₃ ) ₃ N, CH ₃ CN	8 hr, 100°	$Fe[C_3H_4CH=CHCO_2C_2H_5]_2  (62)$	52
		C ₅ H ₅ FeC ₅ H ₄ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N, CH ₃ CN	8 hr, 100°	$C_{5}H_{5}FeC_{5}H_{4}CH=CHCO_{2}C_{2}H_{5}$ (54)	52
	(E)-CH ₃ CH=CHCO ₂ CH ₃	2-H ₂ NC ₆ H ₄ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N	30 hr, 100°	4-Methyl-2-quinolone (55), aniline (22)	66
	CH ₂ =C(CH ₃ )CO ₂ CH ₃	C ₆ H ₅ Br C ₆ H ₅ I	$[P(C_6H_5)_3]_2Pd(OAc)_2Pd(OAc)_2$	(C ₂ H ₃ ) ₃ N (C ₂ H ₃ ) ₃ N, CH ₃ CN	72 hr, 105-110° 18 hr, 100°	$\begin{array}{l} (E)-CH_3(C_6H_5)C = CHCO_2CH_3 & (54) \\ (E)-C_6H_5CH = C(CH_3)CO_2CH_3 & (78), \\ C_6H_5CH_2C(=CH_2)CO_2CH_3 & (19) \end{array}$	14 21
		2-H ₂ NC ₆ H ₄ 1	Pd(OAc) ₂	(C ₂ H ₃ ) ₃ N, CH ₃ CN	42 hr, 100°	3-Methyl-2-quinolone (24)	21
		C ₅ H ₅ FeC ₅ H ₄ I	$Pd(OAc)_2 + P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N, CH ₃ CN	8 hr, 100°	$C_{3}H_{3}FeC_{3}H_{4}CH=C(CH_{3})CO_{2}CH_{3}$ (64)	52
		(E)-BrCH=C(CH ₃ )CO ₂ CH ₃	$[P(C_6H_5)_3]_2Pd(OAc)_2$	(C2H3)3N	48 hr, 100°	$[(E,E)-CH_3O_2CC(CH_3)=CH]_2$ (33), $[(E,Z)-CH_3O_2CC(CH_3)=CH]_2$ (28)	13
		C ₆ H ₅ Br	Pd(OAc) ₂ + 2 POT	(C2H3)3N	22 hr, 100°	$(E)-C_6H_5CH=C(CH_3)CO_2CH_3$ (86), $C_6H_5CH_2C(=CH_3)CO_2CH_3$ (8)	21
		C ₆ H ₅ Br	$Pd(OAc)_2 + P + P + P + P + P + P + P + P + P + $	(C ₂ H ₅ ) ₃ N	22 hr, 100°	(E)-C ₆ H ₃ CH=C(CH ₃ )CO ₂ CH ₃ (83), C ₆ H ₃ CH ₂ C(=CH ₂ )CO ₂ CH ₃ (15)	21
	CH ₂ =C(O ₂ CCH ₃ )CH ₃	C ₆ H ₅ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₃ ) ₃ N	8 hr, 100°	$(C_6H_5)_2$ (24), $(E)-C_6H_5CH=C(C_6H_5)CH_3$ (21), $(Z)-C_6H_5CH=C(C_6H_5)CH_3$ (7), $(E)-C_6H_5CH=C(O_2CCH_3)CH_3$ (10) $(Z)-C_4H_5CH=C(O_2CCH_3)CH_3$ (10)	63 ),
		C ₃ H ₃ FeC ₃ H ₄ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	8 hr, 100°	1,2-Diferrocenyl-1-propene (32)	52

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs.
c,	CH2=CHCH2NHCOCH3	C ₆ H ₃ Br	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N,	17 hr, 100°	(E)-C ₆ H ₃ CH=CHCH ₂ NHCOCH ₃	67
(Contd.)	CH2=CHCH(OCH3)2	CH ₂ =CHBr	Pd(OAc) ₂ + 2 POT	CH ₃ CN Piperidine	20 hr, 100°	(46) 5-Piperidino-3-pentenal dimethyl acetal	27
		CH ₂ =C(CH ₃ )Br	Pd(OAc) ₂ + POT	Piperidine	22 hr, 100°	(57) 4-Methyl-2,4-pentadienal dimethyl aceta (31),	1 27
		(E)-CH ₃ CH=CHBr	Pd(OAc) ₂ + 2 POT	Piperidine	9 hr, 100°	5-piperidino-4-methyl-3-pentenal dimethyl acetal (60) ( <i>E,E</i> )-Sorbic aldehyde dimethyl acetal (23), 5-piperidino-3-bexenal dimethyl	27
		(Z)-CH ₃ CH=CHBr	Pd(OAc) ₂ + 2 POT	Piperidine	8 hr, 100°	acetal (72) (E,Z)-Sorbic aldehyde (22), 5-piperidino-3-hexenal dimethyl	27
		C ₂ H ₃ CBr=CH ₂	Pd(OAc) ₂	Morpholine	48 hr, 125°	acetal (73) 5-Morpholino-4-ethyl-3-pentenal	27
		(E)-CH ₃ CH=C(Br)CH ₃	Pd(OAc) ₂	Morpholine	6 d, 100°	5-Morpholino-4-methyl-3-hexenal	27
		(CH ₃ ) ₂ C=CHBr	Pd(OAc): + 2 POT	Piperidine	18 hr. 100°	dimethyl acetal (78) (CH ₃ ) ₂ C=CHCH=CHCHO (76) ^e	27
		(E)-CH ₃ O ₂ CC(CH ₃ )=CHBr (CH ₃ ) ₂ C=C(Br)CH ₃	$Pd(OAc)_2 + 2 POT$ $Pd(OAc)_2 + 2 POT$	Piperidine	CH ₃ O ₂ C 3.5 d, 145°	CC(CH ₃ )=CHCH=CHCH(OCH ₃ ) ₂ (70 4,5-Dimethyl-3,5-hexadienyl dimethyl acetal (45), 5-piperidino-4,5-dimethyl-3-hexenal	) 27 27
		(E)-n-C_H_oCH=CHI	Pd(OAc) ₂	Piperidine,	48 hr, 100°	dimethyl acetal (13) 5-Piperidino-3-nonenal dimethyl acetal	27
		(Z)-CH ₃ (CH ₂ )CH=CHBr	Pd(OAc) ₂ + 2 POT	CH ₃ CN Piperidine	24 hr, 100°	(71) 2,4-Nonadienal dimethyl acetal (28), 5-piperidino-3-nonenal dimethyl	27
		C ₆ H ₃ I 2-H ₂ NC ₆ H ₄ I	Pd(OAc) ₂ Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N, CH ₃ CN	67 hr, 100° 72 hr, 100°	(E)-C ₆ H ₅ CH=CHCH(OCH ₃ ) ₂ (8) Dihydro-2-quinolone (32), quinoline (53)	62 66
		4-O ₂ NC ₆ H ₄ Br 4-O ₂ NC ₆ H ₄ Br C ₆ H ₅ Br	$\begin{array}{l} Pd(OAc)_2 + 2 \text{ POT} \\ Pd(OAc)_2 + 8 \text{ POT} \\ Pd(OAc)_2 + 2 P(C_6H_5)_3 \end{array}$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N	15 hr, 100° 18 hr, 100° 24 hr, 100°	$\begin{array}{l} 4{-}0_{2}NC_{6}H_{4}CH_{2}CH_{2}CO_{2}CH_{3}  (42) \\ 4{-}0_{2}NC_{6}H_{4}CH_{2}CH_{2}CO_{2}CH_{3}  (59) \\ (E){-}C_{6}H_{3}CH=CHCH(OCH_{3})_{2}  (45), \\ C_{6}H_{3}CH_{2}CH_{2}CO_{2}CH_{3}  (10) \end{array}$	62 62 62
		C ₆ H ₅ Br C ₆ H ₅ Br	$Pd(OAc)_2 + 2 POT$ $Pd(OAc)_2 + 4 POT$	(C2H3)3N (C2H3)3N	24 hr, 100° 22 hr, 100°	(E)- $C_6H_5CH=CHCH(OCH_3)_2$ (47), $C_6H_5CH_5CO_5CH_3$ (34) (E)- $C_6H_5CH=CHCH(OCH_3)_2$ (56), $C_6H_4CH_5CH_5CO_5CH_3$ (39)	62 62
	(E,E)-2,4-Pentadienoic acid	1,3,4-I,Cl,H2NC6H2	Pd(OAc) ₂	(C2H3)3N, CH3CN	21 hr, 100° (F F)-3 4-Cl(1	H.N)C.H.CH=CHCH=CHCO.H (42)	71
		C ₆ H ₅ Br	$Pd(OAc)_2 + 2 POT$	(C2H5)3N	20 hr, 100°	(E,E)-C6H3CH=CHCH=CHCO2H	17
		3,4-CH2O2C6H3Br	Pd(OAc) ₂ + 6 POT	$(C_2H_3)_3N$	24 hr, 100°		17
		(E)-C ₆ H ₅ CH=CHBr	Pd(OAc) ₂ + 2 POT	(C2H3)3N	4 hr, 100°	(60) (60) (60)	17
C ₆	(E,E)-CH ₃ CH=CHCH=CHCH ₃	C ₆ H ₅ Br	Pd(OAc) ₂ + 2 POT	Morpholine	96 hr, 100°	(E)-5-Phenyl-2-morpholino-3-hexene	51
		C ₆ H ₅ Br	Pd(OAc) ₂ + 2 POT	Morpholine	71 hr, 100°	(E)-5-Phenyl-2-morpholino-3-hexene	51
	(E)-CH ₂ =CHC(CH ₃ )=CHCH ₃	C ₆ H ₃ Br	Pd(OAc) ₂ + 2 POT	Morpholine	38 hr, 100°	$(E,E)-C_{6}H_{3}CH=CHC(CH_{3})=CHCH_{3}$ (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55), (55),	51
	$CH_{3} = CHCH = C(CH_{3})_{2}$	C ₆ H ₅ I	Pd(OAc) ₂ + 2 POT	Morpholine,	10 hr. 100°	1-Phenyl-4-methyl-1,3-pentadiene (76).	51
		CH ₂ =C(CH ₃ )Br	Pd(OAc) ₂ + 2 POT	CH ₃ CN Morpholine	22 hr, 100° 2,6-di	5-phenyl-2-methyl-1,3-pentadiene (10) 2,6-Dimethyl-1,3,5-heptatriene (12), imethyl-1-morpholino-2,5-heptadiene (3),	26
		C ₆ H ₃ Br	Pd(OAc) ₂ + 3 POT	Morpholine	2,6-dime 7 hr, 100°	<ul> <li>26) the second se</li></ul>	51
	CH ₂ =C(CH ₃ )C(CH ₃ )=CH ₂	C ₆ H ₃ I	Pd(OAc) ₂ + 2 POT	Morpholine	4-meth 75 hr, 125°	$(E)-C_6H_5CH=C(CH_3)C(CH_3)=CH_2$ (18),	51
	Cyclohexene	C6H3I C6H3Br 4-HOCOC6H₄Br	$Pd(OAc)_2$ $Pd(OAc)_2 + 2 POT$ $Pd(OAc)_2 +$ $P$ $4$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N	15 hr, 100° 15 hr, 100° 41 hr, 125° 40 hr, 125°	CH ₂ C(CH ₃ )=C(CH ₃ )(CH ₂ NC ₄ H ₈ O ⁻ (32) 3-Phenylcyclohexene (72) 3-Phenylcyclohexene (56) 4-(1'-Cyclohexenyl)benzoic acid (16)	66 66 66
	1,3-Cyclohexadiene	CH2=C(CH3)Br C6H3Br	$\frac{1}{Pd(OAc)_2} \int_{3}^{3}$ Pd(OAc)_2 + 2 P(C_6H_5)_3	Piperidine	24 hr, 100° 3-j 3- 16 hr, 100°	1-Isopropenyl-1,3-cyclohexadiene (21), piperidino-6-isopropenylcyclohexene (35), piperidino-4-isopropenylcyclohexene (15) Phenylcyclohexadienes (13),	26 6

			No. 18 48
TABLE I.	VINYLIC SUBSTITUTION	REACTIONS WITH ORGANIC HALIDES	(Continued)
			the second state of second state with

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₆	n-C4H9CH=CH2	C ₆ H ₅ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C2H3)3N	22 hr, 100°	(E)-1-Phenyl-1-hexene (42),	6
(Conid.)		C ₆ H ₅ I	Pd(OAc) ₂	(C2H3)3N	56 hr, 100°	other phenylhexenes (40) (E)-1-Phenyl-1-hexene (28),	6
		CH ₂ =CHBr ( <i>E</i> )-CH ₃ CH=CHBr	Pd(OAc) ₂ + 2 POT Pd(OAc) ₂ + 2 POT	Morpholine Morpholine	16 hr, 100° 47 hr, 100°	1-Morpholino-2-octene (84) 2,4-Nonadiene (18), 2-butyl-1,3-pentadiene (18), 2-morpholino-3-nonene (34),	10 10
		(E)-CH ₃ CH=CHBr	Pd(OAc) ₂	Morpholine	32 hr, 100°	4-methyl-2-morpholino-3-octene (11 2,4-Nonadiene (10), 2-butyl-1,3-pentadiene (10), 2-morpholino-3-nonene (51),	) 10
		(Z)-CH ₃ CH=CHBr	Pd(OAc) ₂	Morpholine	30 hr, 100°	4-metnyi-2-morphoino-3-octene (17 (Z,E)-2,4-Nonadiene (10), 2-butyi-1,3-pentadiene (10), 2-morpholino-3-nonene (52),	) 10
		(Z)-CH ₃ CH=CHBr	Pd(OAc) ₂ + 2 POT	Morpholine	40 hr, 100°	4-methyl-2-morpholino-3-octene (20 (Z,E)-2,4-Nonadiene (15), 2-butyl-1,3-pentadiene (15), 2-morpholino-3-nonene (42),	) 10
		CH ₂ =C(CH ₃ )Br	Pd(OAc) ₂ + 2 POT	Morpholine	68 hr, 100°	4-methyl-2-morpholino-3-octene (15) 2-Methyl-1,3-octadiene (16), 2-methyl-1,4-octadiene (16), 2-methyl-1,4-octadiene (16),	10
		CH ₂ =C(CH ₃ )Br	Pd(OAc) ₂ + 2 POT	Piperidine	68 hr, 100°	2-methyl-1,3-octadiene (16), 2-methyl-1,4-octadiene (16), 2-methyl-1,4-octadiene (16),	10
		CH ₂ =C(CH ₃ )Br	Pd(OAc) ₂	Piperidine	48 hr, 100°	2-Methyl-1,3-octadiene (3), 2-methyl-1,4-octadiene (3), 2-methyl-1-piperidino-2-octene (93)	10
		(CH ₃ ) ₂ C=CHBr	$Pd(OAc)_2 + 2 POT$	Morpholine	48 hr, 100°	2-Methyl-2,4-nonadiene (13), 2-butyl-4-methyl-1,3-pentadiene (15) 2-methyl-2-morpholino-3-octene (31)	10
		(CH ₃ ) ₂ C=CHBr	$Pd(OAc)_2 + 2 POT$	Piperidine	48 hr, 100°	2-Methyl-2,4-nonadiene (14), 2-butyl-4-methyl-1,3-pentadiene (11) 2-methyl-2-piperidino-3-octene (35)	10
				(c)mga		2-butyl-4-methyl-1,3-pentadiene (50)	
		(E)-CH ₃ O ₂ CC(CH ₃ )=CHBr	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃	20 hr, 100°	(E,E)-Methyl 2-methyl-2,4-nonadienoati (63), (63),	e 10
		C ₆ H ₅ Br	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N	41 hr, 100°	(E)-1-Phenyl-1-hexene (44), other phenylhexenes (43)	6
	(E)-n-C ₂ H ₅ CH=CHC ₂ H ₅	C6H3I	Pd(OAc) ₂	(C2H3)3N	15 hr, 100°	3-Phenyl-3-hexene (39), 3-phenyl-2-hexene (23)	66
		C ₆ H ₅ Br	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N	112 hr, 100°	3-Phenyl-3-hexene (23), 3-phenyl-2-hexene (23)	66
	(Z)-n-C ₂ H ₅ CH=CHC ₂ H ₅	C ₆ H ₃ Br	Pd(OAc) ₂ + 2 POT	(C2H3)3N	120 hr, 100°	3-Phenyl-3-hexene (30), 3-phenyl-2-hexene (15) O	66
	2-Cyclohexenol	2-C4H3SBr	$Pd(OAc)_2 + 3 P(C_6H_3)_3$	NaHCO3. Nal. HMPA	9 hr. 120°	(50),	55
	CH ₂ =C(CH ₃ )(CH ₂ ) ₃ OH	C ₆ H ₃ I	PdCl ₂	NaHCO ₃ , NMP	13 hr, 120°	2,2'-bithienyl (25) $C_6H_5CH_2CH(CH_3)(CH_2)_2CHO$ (16), unsaturated $C_6$ alcohols (12), (C) H (12) (12)	15
		C ₆ H ₅ Br	PdCl ₂ + 2 P(C ₆ H ₅ ) ₃	NaHCO ₃ , NMP	14 hr, 100°	$(C_6H_5)_2$ (13) $C_6H_5CH_2CH(CH_3)(CH_2)_2CHO$ (27),	15
	CH ₂ =C(CH ₃ )CH ₂ CHOHCH ₃	C ₆ H ₅ I	PdCl ₂	NaHCO3, NMP	24 hr, 130°	unsaturated C ₆ alcohols (18) C ₆ H ₃ CH ₂ CH(CH ₃ )CH ₂ COCH ₃ (48), unsaturated C ₆ alcohols (15), (C ₆ H ₄ ), (14)	15
		C ₆ H ₅ Br	$PdCl_2 + 2 P(C_6H_5)_3$	NaHCO ₃ , NMP	17 hr, 120°	C ₆ H ₅ CH ₂ CH(CH ₃ )CH ₂ COCH ₃ (56), unsaturated C ₆ alcohols (27)	15
	(CH ₃ ) ₂ C=CHCHOHCH ₃	2-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_nH_s)_3$	NaHCO3. Nal.	9.5 hr. 130°	2-C ₄ H ₃ SC(CH ₃ ) ₂ CH ₂ COCH ₃ (15), 2.2'-bithienvl (40)	55
		3-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3, Nal, HMPA	62 hr, 125°	3-C ₄ H ₃ SC(CH ₃ ) ₂ CH ₂ COCH ₃ (22), [3-C ₄ H ₃ S] ₂ (22), 3-C ₄ H ₃ SCH ₂ CH(CH ₃ )CH ₂ COCH ₃ (17)	56
	(CH ₃ ) ₂ CHCHOHCH=CH ₂	2-C4H3SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , Nal,	5 hr, 120°	2-C ₄ H ₃ SCH ₂ CH ₂ COCH(CH ₃ ) ₂ (93),	55
		3-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , Nal, HMPA	8 hr, 130°	$3-C_4H_3SCH_2CH_2COCH(CH_3)_2$ (4) $3-C_4H_3SCH_2CH_2COCH(CH_3)_2$ (87), $3-C_4H_3SCH(CH_3)_2COCH(CH_3)_2$ (3) $[3-C_4H_3S]_2$ (9)	56
	CH ₂ =C(CH ₃ )CH(OCH ₃ ) ₂	(Z)-CH ₃ CH=CHBr	Pd(OAc) ₂	Piperidine	14 d, 100°	5-Piperidino-2-methyl-3-hexenal dimethyl acetal (57)	27
	(E)-CH ₃ CH=CHCH(OCH ₃ ) ₂	(Z)-CH ₃ (CH ₂ ) ₃ CH=CHBr (Z)-CH ₃ CH=CHBr	Pd(OAc) ₂ Pd(OAc) ₂ + 2 POT	Piperidine Piperidine	6.5 d, 100° 4 d, 100°	2-Methyl-2,4-nonadienal [*] (40) 5-Piperidino-3-methyl-3-hexenal dimethyl acetal (21), N-3-methyl-5-hexenoylpiperidine (5)	27 27

No. of C Atoms	Olefin	Halide	Catalyst ^e	Base and Solvent ^b	Condition	Product(s) and s Yield(s) (%)	Refs.
C ₆ (Contd.)	CH ₂ =CHC(Ó ₂ C ₂ H ₄ )CH ₃	(Z)-CH ₃ CH=CHBr	Pd(OAc) ₂ + 2 POT	Piperidine	4 d, 125	(Z,E)-3,5-Hexadien-2-one ethylene ketal (16), 6-piperidino-4-hexen-2-one ethylene	27
	CH2=CHC(O2C2H4)CH3	C ₆ H ₅ Br	Pd(OAc) ₂ + 4 POT	(C2H3)3N	21 hr, 100°	ketal (47) (E)- $C_6H_5CH=CHC(O_2C_2H_4)CH_3$	62
	(Z)-CH ₃ O ₂ CCH=CHCO ₂ CH ₃	C ₆ H ₅ I	·Pd(OAc) ₂	(C2H3)3N,	5 hr. 100	$CH_3O_2CC(C_6H_5) = CHCO_2CH_3$	66
		C ₆ H ₅ I	Pd(OAc) ₂ + 2 POT	CH ₃ CN (C ₂ H ₅ ) ₃ N, CH ₃ CN	4 hr, 100°	(E) $(34);$ (Z) $(39);$ $(C_6H_5)_2$ (3) CH ₃ O ₂ CC(C ₆ H ₅ )=CHCO ₂ CH ₃ (E) $(43);$ (Z) $(36),$ $(C_6H_5)_2$ (11)	66
		2-H ₂ N-5-BrC ₆ H ₃ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N,	3.5 hr, 100°	6-Bromo-4-carbomethoxy-2-quinolone	66
		2-H ₂ NC ₆ H ₄ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N,	2 hr, 100°	4-Carbomethoxy-2-quinolone (71)	66
		2-H ₂ N-5-HOC ₆ H ₃ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, CH-CN	45 hr, 100°	4-Carbomethoxy-6-hydroxy-2-quinolone	66
		4-H ₂ NC ₆ H ₄ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N.	17 hr, 100°	$(Z)-CH_3O_2C(4-H_2NC_6H_4)=CHCO_2CH_3$	66
		C ₆ H ₅ Br	Pd(OAc) ₂ + 4 POT	(C ₂ H ₃ ) ₃ N, CH ₃ CN	144 hr, 100°	(E)-CH ₃ O ₂ C(C ₆ H ₅ )=CHCO ₂ CH ₃ (10). (Z)-CH ₃ O ₂ C(C ₆ H ₅ )=CHCO ₂ CH ₃	66
	N-Viaylpyrrolidinone	C ₆ H ₅ Br	Pd(OAc) ₂ + 4 POT	(C2H3)3N,	8 hr, 100°	(6) (E)-N-2-Styrylpyrrolidinone (60),	69
		C ₆ H ₅ Br	$Pd(OAc)_2 + P_1$	CH ₃ CN (C ₂ H ₃ ) ₃ N, CH ₃ CN	9.5 hr, 100°	(E)-N-1-styrylpyrrolidinone (40) (E)-N-2-Styrylpyrrolidinone (55), (E)-N-1-styrylpyrrolidinone (44)	69
		( <i>E</i> )-C ₆ H₃CH=CHBr	$4 \left( \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(C2H3)3N	96 hr, 100°		69
		4-(CH ₃ ) ₂ NC ₆ H ₄ Br	Pd(OAc), + 4 POT	(C,H,)N	( <i>E</i> , <i>E</i> 48 hr, 100°	$-[C_4NH_6O]CH=CHCH=CHC_6H_5$ (25) 4-(CH_1)_3NC_6H_4COCH_1 (57)	69
с,	CH ₂ =C(CH ₃ )CH=C(CH ₃ ) ₂	C ₆ H ₅ Br	$Pd(OAc)_2 + 2 POT$	Morpholine	20 d, 100° (E)-C	$C_{6}H_{3}CH_{2}C(CH_{3})=CHC(CH_{3})=CH_{2}$ (11). ( <i>E</i> )- $C_{6}H_{3}CH=C(CH_{3})CH=C(CH_{3})_{2}$ (30)	51
	Methyl sorbate	C ₆ H ₃ Br	$Pd(OAc)_2 + 2 POT$	(C ₂ H ₅ ) ₃ N	(E,E)-(	$C_6H_5C(CH_3) = CHCH = CHCO_2CH_3$ (34),	51
	Tropilidene	2-BrIC ₆ H ₄	Pd(OAc) ₂	(n-C4H9)3N	100°	2-Bromophenyltropilidine (45)	70
	1-Methyl-1,3-cyclohexadiene	CH ₂ =C(CH ₃ )Br	Pd(OAc) ₂	Piperidine	20 hr. 100° I-Iso	propenyl-4-methyl-1,3-cyclohexadiene (39),	26
	2-C ₃ H ₄ NCH=CH ₂ 4-C ₃ H ₄ NCH=CH ₂ CH ₂ =C(CH ₃ )(CH ₂ ) ₂ CHOHCH ₃	C ₆ H ₃ Br 2-C ₄ H ₃ SBr C ₆ H ₃ Br C ₆ H ₃ I	$\begin{array}{l} Pd(OAc)_2 + 2 \text{ POT} \\ (Pd(OAc)_2 + 2 \text{ POT} \\ Pd(OAc)_2 + 2 \text{ POT} \\ Pd(OAc)_2 + 2 \text{ POT} \\ PdCl_2 \end{array}$	(C2H3)3N (C2H3)3N (C2H3)3N (C2H3)3N NaHCO3, NMP	4-isoproj 136 hr, 100° 96 hr, 100° 240 hr, 100° 22.5 hr, 130°	$\begin{array}{l} \text{underlined their (15),} \\ \text{penyl-1-methyl-3-piperidinocyclohexene (9)} \\ (E)-2-C_{3}H_{4}NCH=CHC_{6}H_{5} (84) \\ (E)-4-C_{5}H_{4}NCH=CHC_{6}H_{3}S-2 (57) \\ (E)-4-C_{3}H_{4}NCH=CHC_{6}H_{5} (91) \\ C_{6}H_{5}CH_{2}CH(CH_{3})(CH_{2})_{2}COCH_{3} \\ \end{array}$	23 23 23 15
		C ₆ H ₅ Br	$PdCl_2 + 2 P(C_6H_5)_3$	NaHCO3, NMP	7.5 hr, 120°	unsaturated C ₇ alcohols (25), $(C_6H_3)_2$ (15) $C_6H_3CH_2CH(CH_3)(CH_2)_2COCH_3$ (49)	15
		C U Pr		Morpholine	87 br 100°	unsaturated C ₇ alcohols (23)	51
C ₈	<i>n</i> -C ₃ H ₂ CH=CHCH=CHCH ₃	C6H3BF		мограоние	(E)-C ₆ H ₅ CH(CH) (E)-C ₆ H ₅ CH(CH)	$_{3}$ )CH=CHCH(NC ₄ H ₈ O)(CH ₂ ) ₂ CH ₃ (26), $_{3}$ )CH(NC ₄ H ₈ O)CH=CH(CH ₂ ) ₂ CH ₃ (26), 2-phenyloctadienes (30)	5.
	(E)-(CH ₃ ) ₂ C=CHCH=CHCO ₂ CH ₃	C ₆ H ₅ I	Pd(OAc) ₂	(C2H3)3N	51 hr, 100°	CH,),C=CHCH=C(C,H,)CO,CH, (95)	51
	C ₆ H ₃ CH=CH ₂	1,4-C ₆ H ₄ I ₂ 1,2-C ₆ H ₄ I ₂ 4-BrC ₆ H ₄ I	Pd(OAc) ₂ Pd(OAc) ₂ (Pd(OAc) ₂	$(n-C_4H_9)_3N$ $(n-C_4H_9)_3N$ $(C_2H_5)_3N$ ,	15 hr, 100° 72 hr, 100° 17 hr, 100°	( <i>E,E</i> )- <i>p</i> -Distyrylbenzene (67) ( <i>E,E</i> )- <i>o</i> -Distyrylbenzene (37) ( <i>E</i> )-4-BrC ₆ H ₄ CH=CHC ₆ H ₅ (64)	7 7 17
		C ₆ H ₅ I	Pd black	KOAc, CH ₃ OH	3 hr, 125°	$(E)-C_6H_5CH=CHC_6H_5  (90),$	50
		C ₆ H ₅ I 2-H ₂ N-5-HOC ₆ H ₃ I	Pd(OAc) ₂ Pd(OAc) ₂	(n-C4H9)3N (C2H5)3N	2 hr, 100° 5 hr, 100°	$(E_6H_3)_2C=CH_2$ (10) (E)-Stilbene (75) (E)-2-H_2N-5-HOC_6H_3CH=CHC_6H_3 (50)	7 21
		4-CH ₃ O ₂ CC ₆ H ₄ I Fe(C ₃ H ₄ I) ₂	$\frac{Pd(OAc)_2}{Pd(OAc)_2 + 2 P(C_6H_3)_3}$	(n-C ₄ H ₉ ) ₃ N (C ₂ H ₅ ) ₃ N, CH ₃ CN	2 hr. 100° 8 hr, 100°	$(E)-4-CH_3O_2CC_6H_4CH=CHC_6H_5 (74)$ Fe(C_5H_4CH=CHC_6H_5) ₂ (42)	7 52
		C ₅ H ₅ FeC ₅ H ₄ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₃ ) ₃ N, CH ₃ CN	8 hr, 100°	C ₅ H ₅ FeC ₅ H ₄ CH=CHC ₆ H ₅ (59)	52
		$CH_2 = CBrCH_3 + (Z) - CH_3O_2CCI$	H=CHCO ₂ CH ₃ [P(C ₆ H ₅ ) ₃ ] ₂ Pd(OAc) ₂	(C2H3)3N	96 hr, 100°	CH ₃ O ₂ C CH ₃ O ₂ C CO ₂ CH ₃ (52)	13

No. of C Atoms	Olefin	Halide	Catalyst ^e	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₈	C ₆ H ₅ CH=CH ₂	(CH ₃ ) ₂ C=CHBr	[P(C ₆ H ₅ ) ₃ ] ₂ -Pd(OAc) ₂	(C2H3)3N	300 hr, 100°	(E)-(CH ₃ ) ₂ C=CHCH=CHC ₆ H ₃ (58)	13
(Contd.)		2-C ₅ H ₄ NBr	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N	240 hr, 100°	(19)	23
		3-C3H4NBr	Pd(OAc) ₂ + 4 POT	(C ₂ H ₅ ) ₃ N	20 hr, 100°	NС ₆ Н, (78)	23
		4-C ₃ H ₄ NBr·HCl	Pd(OAc) ₂ + 2 POT	(C2H3)3N	240 hr, 100°	N (41) CO ₂ CH ₃	23
		(E)-BrCH=C(CH ₃ )CO ₂ CH ₃	$[P(C_6H_3)_3]_2Pd(OAc)_2$	(C2H3)3N	21 hr, 100°	C ₆ H ₅ (78)	13
		CH ₃ O ₂ C-C-Br	Pd(OAc) ₂ + 2 POT	(C2H3)3N	18 hr, 100°	CH ₃ O ₂ C-C ₆ H ₅ (61)	23
		4-O ₂ NC ₆ H ₄ Br 2-H ₂ NC ₆ H ₄ Br 4-HO ₂ CC ₆ H ₄ Br 4-CH ₃ O ₂ CC ₆ H ₄ Br	$\begin{array}{l} Pd(OAc)_2 + 4 \ POT \\ Pd(OAc)_2 + 8 \ POT \\ Pd(OAc)_2 + 4 \ POT \\ Pd(OAc)_2 + 4 \ POT \\ Pd(OAc)_2 + 2 \ P(C_6H_5)_3 \end{array}$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N ( <i>n</i> -C ₄ H ₉ ) ₃ N	40 hr, 100° 2 hr, 100° 3.5 hr, 100° 8 hr, 100°	$\begin{array}{l} (E) - 4 - O_2 N C_6 H_4 C H = C H C_6 H_5  (75) \\ (E) - 2 - H_2 N C_6 H_4 C H = C H C_6 H_5  (73) \\ (E) - 4 - H O_2 C C_6 H_4 C H = C H C_6 H_5  (74) \\ (E) - 4 - C H_3 O_2 C C_6 H_4 C H = C H C_6 H_5 \end{array}$	61 20 21 6
		3,4-HCO(HO)C ₆ H ₃ Br	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N	9 hr, 100°	$(E)-3,4-OHC(HO)C_6H_3CH=CHC_6H_5$ (57)	57
		(E)-C ₆ H ₅ CH=CHBr	[P(C ₆ H ₅ ) ₃ ] ₂ Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N	135 hr, 100°	(E,E)-C ₆ H ₃ CH=CHCH=CHC ₆ H ₃ (49)	13
		(E)-CH ₃ O ₂ CCH=CHC ₆ H ₄ Br	Pd(OAc) ₂ + 2 POT	(C2H3)3N	2 hr, 100°		17
		(Z)-2-HO ₂ CCH=CHC ₆ H ₄ Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	44 hr, 100°		17
		4-O₂NC&H₄CI C&H₃CI 4-HOC&H₄CI 4-NCC&H₄CI 4-F₃CC&H₄CI	5% Pd/C 5% Pd/C 5% Pd/C 5% Pd/C 5% Pd/C	Na2CO3, CH3OH Na2CO3, CH3OH Na2CO3, CH3OH Na2CO3, CH3OH Na2CO3, CH3OH Na2CO3, CH3OH	4 hr, 150° 4 hr, 150° 4 hr, 150° 4 hr, 150° 4 hr, 150° 4 hr, 150°	$(E) - 4 - C - C_{6} + C + C - C - C_{6} + C - C - C_{6} + C - C - C_{6} + C - C - C - C - C - C - C - C - C - C$	19 19 19 19 19
	2-BrC ₆ H ₄ CH=CH ₂	4-HO ₂ CC ₆ H ₄ Cl 4-CH ₃ OC ₆ H ₄ Cl 4-CH ₃ OOC ₆ H ₄ Cl 4-CH ₃ O ₂ CC ₆ H ₄ Cl 2-O ₂ NC ₆ H ₄ I	5% Pd/C 5% Pd/C 5% Pd/C 5% Pd/C Pd(OAc) ₂	Na ₂ CO ₃ , CH ₃ OH Na ₂ CO ₃ , CH ₃ OH Na ₂ CO ₃ , CH ₃ OH Na ₂ CO ₃ , CH ₃ OH (C ₂ H ₃ ) ₃ N, CH ₂ CN	4 hr, 150° 4 hr, 150° 4 hr, 150° 4 hr, 150° 4 hr, 150° 49 hr, 100°	(E)-4-HO ₂ CC ₆ H ₄ CH=CHC ₆ H ₅ (16) (E)-4-CH ₃ OC ₆ H ₄ CH=CHC ₆ H ₅ (12) 4-CH ₃ COC ₆ H ₄ CH=CHC ₆ H ₅ (19) 4-CH ₃ O ₂ CC ₆ H ₄ CH=CHC ₆ H ₅ (21) (E)-2-O ₂ NC ₆ H ₄ CH=CHC ₆ H ₄ Br-2 (73)	19 19 19 19 46
	$4-O_2NC_6H_4CH=CH_2$ (E)-CH_2CH=CHCH(OC_3H_4),	C ₆ H ₅ I C ₆ H ₄ I	$Pd(OAc)_2$ $Pd(OAc)_3 + 4 POT$	$(n-C_9H_9)_3N$ $(C_2H_3)_3N$	2hr, 100° 24 hr, 100°	(E)-4-Nitrostilbene (85) $C_8H_8C(CH_3)=CHCH(OC_3H_3)_2$ (50),	7 62
	(E)-C ₂ H ₃ O ₂ CCH=CHCO ₂ C ₂ H ₃	C ₆ H ₃ 1	Pd(OAc) ₂	(C ₂ H ₃ ) ₃ N, CH ₃ CN	0.5 hr, 100°	$C_6H_3CH(CH_3)CH_2CO_2C_2H_3$ (30) $C_2H_3O_2CC(C_6H_3)=CHCO_2C_2H_3$ ( <i>E</i> ) (19); ( <i>Z</i> ) (75), ( <i>C</i> ) (19); ( <i>Z</i> ) (75),	66
		C ₆ H ₅ I	Pd(OAc) ₂ + 2 POT	(C2H3)3N, CH3CN	2 hr, 100°	$(C_6H_5)_2$ (5) $C_2H_5O_2CC(C_6H_5)=CHCO_2C_2H_5$ (E) (6); (Z) (80), $(C_6H_5)_2$ (11)	66
		2-H ₂ NC ₆ H ₄ I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N, CH ₃ CN	48 hr, 100°	4-Carbethoxy-2-quinolone (47), aniline (20)	66
C ₉	(E)-C ₆ H ₃ CH=CHCH ₃	C ₆ H ₅ I	Pd(OAc) ₂	(n-C4H9)3N	2 hr, 100°	$(C_6H_5)_2C=CHCH_3$ (21), (E)-1,2-Diphenyl-1-propene (26) (Z)-1,2-1 (E)-1,2-1 2,3-1 1,1-1 ^f	7
		C6H3I	Pd(OAc) ₂	(C ₂ H ₅ ) ₃ N	34 hr, 100°	$\frac{1}{2}, \frac{1}{44}, \frac{1}{12}, \frac{1}{27}, \frac{1}{27}$	6
	(Z)-C ₆ H ₃ CH=CHCH ₃	C ₆ H ₃ I C ₆ H ₃ Br C ₆ H ₃ I C ₄ H ₄ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$ $Pd(OAc)_2 + 2 P(C_6H_5)_3$ $Pd(OAc)_2$ $Pd(OAc)_3$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N ( <i>n</i> -C ₄ H ₉ ) ₃ N (C ₃ H ₈ ) ₃ N	34 hr, 100° 43 hr, 100° 2 hr, 100° 34 hr, 100°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7 6
		C ₆ H ₅ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	142 hr, 60°	(Z)-1,2-1 $(E)$ -1,2-1 $(Z)$ -1 $(Z)$	6
		C ₆ H₃I C ₆ H₃Br	$Pd(OAc)_2 + 2 P(C_6H_5)_2$ $Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N	34 hr, 100° 82 hr, 100°	64 13 0 5 71 14 2 7 67 17 0 7	6
	C ₆ H ₃ C(CH ₃ )=CH ₂	$C_6H_5I$ $C_6H_5I$ (Z)-CH ₃ CH=CHBr	$Pd(OAc)_2$ $Pd(OAc)_2 + 2 P(C_6H_5)_3$ $Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N	33 hr, 100° 33 hr, 100° 72 hr, 100°	${}^{0}_{4}$ ${}^{0}_{69}$ ${}^{0}_{5}$ ${}^{0}_{6}$ C ₆ H ₅ C(CH ₃ )=CHCH=CHCH ₃ (40)	6 61
		C ₆ H ₅ Br	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N	33 hr, 100°	$\frac{(Z)-1,2-1}{3},\frac{(E)-1,2-1}{58},\frac{2,3-1}{5},\frac{1,1-1}{0},\\ \bigcup_{  }^{O}$	6
	CH ₂ =CHCHOHC ₆ H ₅	3-BrC3H4N	Pd(OAc) ₂	NaHCO3, DMF	24 hr, 120°	C ₆ H ₅ (91)	53
		2-C4H3SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3, NaI,	4 hr, 120°	2-C4H3SCH2CH2COC6H3 (88),	55
		3-C ₄ H ₃ SBr	$Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO3, Nal, HMPA	9 hr, 120°	3-C ₄ H ₃ SCH ₂ CH ₂ COC ₆ H ₅ (83), 3,3'-bithienyl (9)	55

TABLE	VINULC SUBSTITUTION REACTIONS WITH ORGANIC HALIDES	(Continued)
TABLE I.	VINILIC SUBSTITUTION REACTIONS WITH ORGANIC HALIDES	(Commuea)

	No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs.
							C ₆ H ₅	
	C ₆ (Contd.)	CH ₂ =CHCHOHC ₆ H ₅	4-Bromo-2,6-lutidine	. $Pd(OAc)_2 + 3 P(C_6H_5)_3$	NaHCO ₃ , Nal, HMPA	9 hr, 120°	(90)	58
	(00.112.)	CH2=CHCH(OH)C6F13	C ₆ H ₅ I	Pd(OAc) ₂	(C ₂ H ₃ ) ₃ N,	20 hr, 80°	$C_6H_5CH_2CH_2COC_6F_{13}$ (53),	71
		2-HOC ₆ H ₄ CH ₂ CH=CH ₂	C ₆ H ₅ Br	$Pd(OAc)_2 + 4 POT$	(C ₂ H ₅ ) ₃ N	1.5 hr, 100°	$2-HOC_6H_4CH = CHCH_2C_6H_5$ (53),	72
		4-CH ₃ OC ₆ H ₄ CH=CH ₂	C ₆ H ₅ Cl	5° Pd/C	Na ₂ CO ₃ ,	4 hr, 150°	$(E)-4-CH_3OC_6H_4CH=CHC_6H_5  (37)$ $(E)-4-CH_3OC_6H_4CH=CHC_6H_5  (28)$	19
		C ₆ H ₃ COCH=CH ₂	C ₃ H ₃ FeC ₃ H ₄ I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	CH ₃ OH (C ₂ H ₅ ) ₃ N, CH ₂ CN	8 hr, 100 ^e	$C_5H_5FeC_5H_4CH=CHCOC_6H_5$ (70)	52
		$C_6H_3SCH=CHCH_3$ $CH_2=C(C_6H_3)CO_2H$	C₀H₅Br 2-H₂NC₀H₄Br	$Pd(OAc)_2 + P(C_6H_5)_3$ $Pd(OAc)_2$	TMED, $CH_3CN$ ( $C_2H_5$ ) ₃ N,	3-4 d, reflux 25 hr, 100°	$C_6H_5SCH = C(C_6H_5)CH_3$ (49-65) 3-Phenyl-2-quinolone (20),	73 49
		(E)-2-H ₂ NC ₆ H ₄ CH=CHCO ₂ H	C ₆ H ₅ I	Pd(OAc) ₂	CH ₃ CN (C ₂ H ₅ ) ₃ N, CH ₂ CN	(E)-3 27 hr, 100°	3-o-aminophenyl-2-phenylacrylic acid (41) 4-Phenyl-2-quinolone (71)	66
386	C ₁₀	$C_6H_5CH=CHO_2CCH_3$ $CH_2=C(O_2CCH_3)C_6H_5$	C6H31 C6H31	$Pd(OAc)_2 + 2 P(C_6H_5)_3$ $Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C ₂ H ₅ ) ₃ N (C ₂ H ₅ ) ₃ N	8 hr, 100° 8 hr, 100°	$\begin{array}{ll} (E) - C_6 H_5 CH = CHC_6 H_5 & (58) \\ (E) - C_6 H_5 CH = CHC_6 H_5 & (36), \\ (C_6 H_5)_2 & (36), \end{array}$	63 63
		C ₆ H ₄ C(O ₂ CCH ₃ )=CH ₂	C3H3FeC3H4I	$Pd(OAc)_2 + 2 P(C_6H_5)_3$	(C2H3)3N,	8 hr. 100	$C_6H_5C(O_2CCH_3) = CHC_6H_5$ (20) $C_5H_5FeC_5H_4CH = CHC_6H_5$ (21),	52
		(F)-C,H,CH=CHCO,CH,	C.H.I	Pd(OAc),	CH ₃ CN (C ₃ H ₃ ) ₃ N	98 hr. 100	$C_3H_3FeC_3H_4CH=C(O_2CCH_3)C_6H_5$ ( (C_4H_4)_C=CHCO_5CH_3 (67)	14) 66
			4-CH ₃ O ₂ CC ₆ H ₄ Br	$Pd(OAc)_2 + 4 POT$	(C2H3)3N	53 hr, 150°	$(Z)-4-HO_2CC_6H_4C(C_6H_5)=CHCO_2H'$	66
		Myrcene	BrCH=C(CH ₃ )(CH ₂ ) ₂ OH	$Pd(OAc)_2 + 2 POT$	Morpholine	2 d, 100° Dimethyl 7 morn	holinomethyl 3.6.10 doderatrien I. ol. (41)	126
		2-CH2=C(CH3)CONHC6H4Br	÷	Pd(OAc) ₂ + 2 POT	(C ₂ H ₅ ) ₃ N,	15.5 hr, 100°	4-Methyl-2-quinolone (43)	49
		N-Vinylphthalimide	2-BrC ₆ H ₄ I	Pd(OAc) ₂	$(C_2H_5)_3N$	20 hr, 100°	N-2-o-Bromostyrylphthalimide (75)	69
			2-H2NC6H4I	Pd(OAc) ₂	$(C_2H_5)_3N$ ,	45 hr, 100°	Indole (26)	69
			4-O ₂ NC ₆ H ₄ Br	Pd(OAc) ₂ + 2 POT	CH3CN (C2H3)3N.	17 hr, 100°	N-2-p-Nitrostyrylphthalimide (64)	69
			C ₆ H ₃ Br	Pd(OAc) ₂ + 4 POT	CH ₃ CN (C ₂ H ₃ ) ₃ N, CH ₃ CN	108 hr, 100°	N-2-Styrylphthalimide (74)	69
			4-CH₃CO₂C₀H₄Ɓr 3.4-(CH₃CO₂)₂C₀H₃Br	$Pd(OAc)_2 + 8 POT$ $Pd(OAc)_2 + 6 POT$	(C2H3)3N, CH3CN (C2H3)3N, CH3CN	18 hr, 100° 15 hr, 100°	N-2-p-Acetoxystyrylphthalimide (75) N-2-(3',4'-Diacetoxystyryl)phthalimide (68)	69 69
	CII	(E)-4-CH ₃ O ₂ CC ₆ H ₄ CH=CHCO ₂ H	C ₆ H ₅ Br	$Pd(OAc)_2 + 4 POT$	(C2H3)3N	56 hr, 150°	$4 \cdot HO_2CC_6H_4C(C_6H_5) = CHCO_2H'$	66
	C12	3-Butenylphthalimide	3-C ₅ H ₄ NBr	Pd(OAc) ₂ + 4 POT	(C ₂ H ₅ ) ₃ N	10 hr, 100°	(E)-3-C ₅ H ₄ NCH=CHCH ₂ CH ₂ NH ₂ (37)	23
	C ₁₃	2-BrC ₆ H ₄ N(COCH ₃ )CH ₂ CH=CHCO ₂ CH ₃		$Pd(OAc)_2 + 2 P(C_6H_5)_3$	TMED, DMF	5 hr, 125°	Methyl N-acetyl-3-indolylacetate (43), 2-BrC ₆ H ₄ NHCOCH ₃ (29), C ₆ H ₄ NHCOCH ₃ (16)	74
	C15	(Z)-C ₆ H ₅ CH=CHCONHC ₆ H ₅	2-H2NC6H41	Pd(OAc) ₂	(C ₂ H ₃ ) ₃ N, CH ₂ CN	19 hr, 100°	4-Phenyl-2-quinolone (66)	66
		(E)-C ₆ H ₅ CH=CHCONHC ₆ H ₅	2-H ₂ NC ₆ H ₄ 1	Pd(OAc) ₂	(C ₂ H ₃ ) ₃ N, CH ₃ CN	31 hr, 100°	4-Phenyl-2-quinolone (15) H	66
		(E)-2-C ₆ H ₅ CH=CHCONHC ₆ H ₄ Br	<del></del>	Pd(OAc) ₂ + 4 POT	(C2H3)3N, CH3CN	17.5 hr, 100°		49
387	C16	(E)-2-C ₆ H ₃ C(CH ₃ )=CHCONHC ₆ H ₄ Br	-	Pd(OAc) ₂ + 4 POT	(C2H3)3N, CH3CN	29 hr, 100°	$ \begin{array}{c} H \\ H \\ CH_{3} \\ CH_{4} \\ CH_{4} \\ CH_{5} \\ CH_{5$	49
	C ₁₈	(Z)-2-BrC ₆ H ₄ N(CH ₂ C ₆ H ₅ )COCH=CHCO ₂ C	Н, —	$Pd(OAc)_2 + P(C_6H_3)_3$	(n-C4H9)3N, CH3CN	6 hr, 70°	$CH_3CO_2$ $C_nH_s$ $CO_3CH_3$ $CO_3CH_3$	75
	C19	, (Ζ)-2-BrC ₆ H ₄ CH ₂ N(CH ₂ C ₆ H ₃ )COCH=CHC	03сн3 —	$Pd(OAc)_2 + P(C_6H_3)_3$	(n-C4H9)3N, C6H3CN	3 hr, 125°	CH ₃ O ₂ C 0 (29),	75
							N_C ₆ H ₅ (19)	

No. of C Atoms	Olefin	Halide	Catalyst ^a	Base and Solvent ^b	Conditions	Product(s) and Yield(s) (%)	Refs
C ₂₁	(E)-2-BrC ₆ H ₄ N(C ₆ H ₃ )COCH=CHC ₆ H ₃	i <b>-</b> .	$PdCl_2C_6H_5CN)_2 + P(C_6H_5)_3$	(n-C4H9)3N, CH3CN	6 hr, 70°	$C_{\bullet}H_{5}$ $(13),$ $I_{C_{\bullet}H_{5}}$	75
C22	2-BrC ₆ H ₄ CH ₂ N(C ₆ H ₃ )CH ₂ CH=CHC ₆ H ₅	-	$Pd(OAc)_2 + 2 P(C_8H_5)_3$	TMED	69 hr, 125°	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	74
C ₂₃	(E)-2-BrC ₈ H ₄ N(CH ₂ C ₈ H ₅ )COCH (CO ₂ C ₂ H ₅ )CH ₂ CH=CHCO ₂ CH ₃	-	$Pd(OAc)_2 + P(C_6H_5)_3$	(n-C4H9)3N, C6H3CN	6 hr, 120°	CO ₂ CH ₃ -CO ₂ C ₂ H ₅ (38)	75

*  $Pd(OAc)_2 = Pd(O_2CCH_3)_2$  and  $POT = P(o-CH_3C_6H_4)_3$ . * NMP = N-methylpyrrolidinone, HMPA = hexamethylphosphoramide, NMA = N-methylacetamide, TMED = N, N, N', N'-tetramethylethylenediamine, DMF = N, N-dimethylformamide. * 0.05%  $Pd(OAc)_2$  was used. * 3-OH is  $C_6H_5CH=CHCHOHCH_3$ , 3-CO is  $C_6H_5CH_2CH_2COCH_3$ , 2-OH is  $CH_2=C(C_6H_3)CHOHCH_3$ , and 2-CO is  $CH_3CH(C_6H_5)COCH_3$ . * The yield was obtained after acidic hydrolysis. f (Z)-1,2-1 is (Z)-1,2-diphenyl-1-propene, (E)-1,2-diphenyl-1-propene, 2,3-1 is 2,3-diphenyl-1-propene, and 1,1-1 is 1,1-diphenyl-1-propene.

388

## References

- 1. B. M. Trost, L. Weber, P. E. Strege, T. J. Fullerton, and T. J. Dietsche, J. Am. Chem. Soc., **100**, 3416 (1978).
- 2. B. Akermark, J. E. Backvall, L. S. Hegedus, and K. Zetterberg, J. Organomet. Chem., **72**, 127 (1974).
- 3. T. Hosokawa, H. Ohkata, and I. Moritani, Bull. Chem. Soc. Jpn., **48**, 1533 (1975).
- For example, see N. Okukado, D. E. Van Horn, W. L. Klima, and E. Negishi, Tetrahedron Lett., **1978**, 1027; D. Milstein and J. K. Stille, J. Am. Chem. Soc., **101**, 4992 (1979); N. Miyaura, K. Yamada, and A. Suzuki, Tetrahedron Lett., **1979**, 3437; N. Miyaura and A. Suzuki, J. Chem. Soc., Chem. Commun, **1979**, 866; H. Yoshimoto and H. Itatani, Bull. Chem. Soc. Jpn., **46**, 2490 (1973).
- 5. R. F. Heck, J. Am. Chem. Soc., 90, 5518 (1968).
- 6. H. A. Dieck and R. F. Heck, J. Am. Chem. Soc., 96, 1133 (1974).
- 7. R. F. Heck and J. P. Nolley, Jr., J. Org. Chem., 37, 2320 (1972).
- 8. R. F. Heck, Acct. Chem. Res., 12, 146 (1979).
- 9. B. Hrnjez and R. F. Heck, University of Delaware, unpublished results.
- 10. B. A. Patel and R. F. Heck, J. Org. Chem., 43, 3898 (1978).
- 11. J. Kim, B. A. Patel, and R. F. Heck, J. Org. Chem., 46, 1067 (1981).
- 12a. B. A. Patel, J.-I. Kim, D. D. Bender, L. Kao, and R. F. Heck, J. Org. Chem., **46**, 1061 (1981).
- 12b. L.-C. Kao, B. A. Patel, and R. F. Heck, University of Delaware, unpublished results.
- 13. H. A. Dieck and R. F. Heck, J. Org. Chem., 40, 1083 (1975).
- 14. J. B. Melpolder and R. F. Heck, J. Org. Chem., 41, 265 (1976).
- 15. A. J. Chalk and S. A. Magennis, J. Org. Chem., 41, 1206 (1976).
- 16. R. C. Larock and M. A. Mitchell, J. Am. Chem. Soc., 100, 180 (1978).
- 17. B. A. Patel, J. E. Dickerson, and R. F. Heck, J. Org. Chem., **43**, 5018 (1978).
- 18. H. A. Dieck and R. F. Heck, University of Delaware, unpublished results.
- 19. M. Julia, M. Duteil, C. Grard, and E. Kuntz, Bull. Soc. Chim. Fr., **1973**, 2791.
- 20. C. B. Ziegler, Jr., and R. F. Heck, J. Org. Chem., 43, 2941 (1978).
- 21. B. A. Patel, C. B. Ziegler, N. A. Cortese, J. E. Plevyak, T. C. Zebovitz, M. Terpko, and R. F. Heck, J. Org. Chem., **42**, 3903 (1977).
- 22. T. Yamane, K. Kikukawa, M. Takagi, and T. Matsuda, Tetrahedron, **29**, 955 (1973).
- 23. W. C. Frank, Y. C. Kim, and R. F. Heck, J. Org. Chem., 43, 2947 (1978).

- 24. L.-C. Kao and R. F. Heck, University of Delaware, unpublished results.
- 25. J. E. Plevyak and R. F. Heck, J. Org. Chem., 43, 2454 (1978).
- 26. B. A. Patel, L. Kao, N. A. Cortese, J. V. Minkiewicz, and R. F. Heck, J. Org. Chem., **44**, 918 (1979).
- D. D. Bender, L.-C. Kao, J.-I. Kim, B. A. Patel, and R. F. Heck, University of Delaware, unpublished results.
- 28. C. S. Rondestvedt, Jr., Org. React., 11, 189 (1960); 24, 225 (1976).
- 29. K. Kikukawa and T. Matsuda, Chem. Lett., 1977, 159.
- K. Kikukawa, K. Nagira, N. Terao, F. Wade, and T. Matsuda, Bull. Chem. Soc. Jpn., **52**, 2609 (1979).
- 31. R. F. Heck, J. Organomet. Chem., 37, 389 (1972).
- 32. G. D. Daves, Jr., and C. C. Cheng, Prog. Med. Chem., 13, 303 (1976).
- 33. J. L. Ruth and D. E. Bergstrom, J. Am. Chem. Soc., 98, 1587 (1976).
- 34. R. F. Heck, J. Am. Chem. Soc., 90, 5531 (1968).
- 35. M. E. Vol'pin, R. Taube, H. Drevs, L. G. Volkova, I. Y. Levitin, and T. M. Ushakova, J. Organomet. Chem., **39**, C79 (1972).
- 36. W. P. Weber, R. A. Felix, A. K. Willard, and K. E. Koenig, Tetrahedron Lett., **1971**, 4701.
- S. Akhrem, N. M. Christovalova, E. I. Mysov, and M. E. Vol'pin, J. Organomet. Chem., **72**, 163 (1974).
- 38. K. Yamamoto, K. Shimohara, T. Ohuchi, and M. Kumada, Tetrahedron Lett., **1974**, 1153.
- 39. J. Yoshida, K. Tamao, M. Takahashi, and M. Kumada, Tetrahedron Lett., **1978**, 2161.
- 40. J. F. Fauvarque and A. Jutand, J. Organomet. Chem., **132**, C17 (1977).
- 41. S. Uemura, K. Zushi, M. Okano, and K. Ichikawa, J. Chem. Soc., Chem. Commun., **1972**, 234.
- 42. N. Luong-Thi and H. Rivieriere, J. Chem. Soc., Chem. Commun., **1978**, 918.
- 43. Y. Fujiwara, R. Asano, I. Moritani, and S. Teranishi, J. Org. Chem., **41**, 1681 (1976), and previous papers in the series.
- 44. R. S. Shue, J. Chem. Soc., Chem. Commun., **1971**, 1510.
- 45. T. Mizoroki, K. Mori, and A. Ozaki, Bull. Chem. Soc. Jpn., 44, 581 (1971).
- 46. J. E. Plevyak, J. E. Dickerson, and R. F. Heck, J. Org. Chem., **44**, 4078 (1979).
- 47. Y. Tamaru, Y. Yamada, and Z. Yoshida, Tetrahedron Lett., 1978, 919.
- 48. C. A. Young, R. R. Vogt, and J. A. Nieuwland, J. Am. Chem. Soc., **58**, 1806 (1936).
- 49. M. O. Terpko and R. F. Heck, University of Delaware, unpublished

results.

- 50. K. Mori, T. Mizoroki, and A. Ozaki, Bull. Chem. Soc. Jpn., **46**, 1505 (1973).
- 51. F. G. Stakem and R. F. Heck, J. Org. Chem., 45, 3584 (1980).
- 52. A. Kasahara, T. Izumi, and M. Maemura, Bull. Chem. Soc. Jpn., **50**, 1021 (1977).
- 53. Y. Tamaru, Y. Yamada, and Z. Yoshida, J. Org. Chem., 43, 3396 (1978).
- 54. A. J. Chalk and S. A. Magennis, J. Org. Chem., 41, 273 (1976).
- 55. Y. Tamaru, Y. Yamada, and Z. Yoshida, Tetrahedron, 35, 329 (1979).
- 56. Y. Tamaru, Y. Yamada, and Z. Yoshida, Tetrahedron Lett., **1977**, 3365.
- 57. J. Plevyak and R. F. Heck, University of Delaware, unpublished results.
- 58. Y. Tamaru, Y. Yamada, T. Arimoto, and Z. Yoshida, Chem. Lett., **1978**, 975.
- 59. I. Arai and G. Daves, Jr., J. Org. Chem., 44, 21 (1979).
- 60. M. Julia and M. Duteil, Bull. Soc. Chim. Fr., **1973**, 2790.
- 61. N. Cortese and R. F. Heck, University of Delaware, unpublished results.
- 62. T. Zebovitz and R. F. Heck, J. Org. Chem., 42, 3907 (1977).
- A. Kasahara, T. Izumi, and N. Fukuda, Bull. Chem. Soc. Jpn., **50**, 551 (1977).
- 64. K. von Werner, J. Organomet. Chem., **136**, 385 (1977).
- 65. R. F. Heck, Pure Appl. Chem., 50, 691 (1978).
- 66. N. A. Cortese, C. B. Ziegler, Jr., B. J. Hrnjez, and R. F. Heck, J. Org. Chem., **43**, 2953 (1978).
- 67. W. Frank and R. F. Heck, University of Delaware, unpublished results.
- 68. T. Palmer and R. F. Heck, University of Delaware, unpublished results.
- 69. C. B. Ziegler, Jr., and R. F. Heck, J. Org. Chem., 43, 2949 (1978).
- 70. K. Yamamura, K. Nakatsu, K. Nakao, T. Nakagawa, and I. Murata, Tetrahedron Lett., **1979**, 4999.
- 71. L.-C. Kao and R. F. Heck, University of Delaware, unpublished results.
- 72. C. B. Ziegler, Jr. and R. F. Heck, University of Delaware, unpublished results.
- 73. B. M. Trost and Y. Tanigawa, J. Am. Chem. Soc., 101, 4743 (1979).
- 74. M. Mori, K. Chiba, and Y. Ban, Tetrahedron Lett. 1977, 1037.
- 75. M. Mori and Y. Ban, Tetrahedron Lett. 1979, 1133.